K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 2 2020

A B C H M N

a) Nối AM

Do BA = BM => △ABM cân tại A

=> BAM = BMA 

Ta có: BAM + MAN = 90o => BMA + MAN = 90o

Lại có: MAN + AMN = 90o (△MAN vuông tại N)

=> HMA = NMA

Xét △HMA và △NMA có:

MHA = MNA (= 90o)

AM: chung

HMA = NMA (cmt)

=> △HMA = △NMA (ch-gn)

=> AH = AN (2 cạnh tương ứng)

=> △AHN cân tại A

b) Xét △ABC vuông tại A

=> BC2 = AB2 + AC2 (định lí Pytago)

=> AB2 + AC2 + AH > AB2 + AC2

=> BC + AH > AB + AC

c) Câu này hình như phải là chứng minh 2AC2 - BC2 = CH2 - BH2 chứ nhỉ? Nếu vậy thì cách làm như sau:

Xét △HAC vuông tại H

=> AC2 = HC2 + HA2 (định lí Pytago)

=> HC2 = AC2 - HA2

Xét △BHA vuông tại H

=> AB2 = HB2 + HA2 (định lí Pytago)

=> HB2 = AB2 - HA2

Khi đó:

CH2 - BH2 = AC2 - HA2 - AB2 + HA2

=> CH2 - BH2 = AC2 - AB2

=> CH2 - BH2 = AC2 + AC2 - BC2 (đpcm)

https://h.vn/hoi-dap/tim-kiem?q=Cho+tam+gi%C3%A1c+ABC+vu%C3%B4ng+t%E1%BA%A1i+A.%28AB%3CAC%29+%C4%91%C6%B0%E1%BB%9Dng+cao+AH.+Tr%C3%AAn+c%E1%BA%A1nh+BC+l%E1%BA%A5y+M+sao+cho+BM%3DBA.+T%E1%BB%AB+M+k%E1%BA%BB+%C4%91%C6%B0%E1%BB%9Dng+th%E1%BA%B3ng+vu%C3%B4ng+g%C3%B3c+v%E1%BB%9Bi+AC%28N+thu%E1%BB%99c+AC%29+c%2Fm%3A++a%29+tam+gi%C3%A1c+AHN+c%C3%A2n++b%29+BC%2BAH%3EAB%2BAC++c%29+2AC2-BC%3DCH2-BH2&subject=0

k bt giải nhờ mạng |~ mạng giải ~ thông cảm cho

31 tháng 7 2023

\(AB^2=AH^2+BH^2\Rightarrow AH^2=AB^2-BH^2\left(1\right)\left(Pitago\right)\)

\(AC^2=AH^2+CH^2\Rightarrow AH^2=AC^2-CH^2\left(2\right)\left(Pitago\right)\)

\(\left(1\right),\left(2\right)\Rightarrow AC^2-CH^2=AB^2-BH^2\)

\(\Rightarrow AB^2+CH^2=AC^2+BH^2\)

\(\Rightarrow dpcm\)

31 tháng 7 2023

 Ta có \(AB^2-AC^2=\left(BH^2+AH^2\right)-\left(CH^2+AH^2\right)\) \(=BH^2-CH^2\) \(\Rightarrow AB^2+CH^2=AC^2+BH^2\), đpcm.

 (Bài này kết quả vẫn đúng nếu không có điều kiện tam giác ABC vuông tại A.)

20 tháng 9 2021

GIÚP mình thật đầy đủ nhất

Bài 2: 

Ta có: \(\dfrac{AB}{AC}=\dfrac{5}{6}\)

\(\Leftrightarrow\dfrac{HB}{HC}=\dfrac{25}{36}\)

\(\Leftrightarrow HB=\dfrac{25}{36}HC\)

Ta có: HB+HC=BC

\(\Leftrightarrow HC\cdot\dfrac{61}{36}=122\)

\(\Leftrightarrow HC=72\left(cm\right)\)

hay HB=50(cm)

Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

=>ΔAHB=ΔAHC

=>góc BAH=góc CAH

Xét ΔAMH vuông tại M và ΔANH vuông tại N có

AH chung

góc MAH=góc NAH

=>ΔAMH=ΔANH

=>NH=MH

AH^2-AN^2=NH^2

BH^2-BM^2=MH^2

mà NH=MH

nên AH^2-AN^2=BH^2-BM^2

=>AH^2+BM^2=AN^2+BH^2

1: BA=căn 10^2-6^2=8cm

sin ABC=AC/BC=3/5

=>góc ABC=37 độ

AH=6*8/10=4,8cm

BH=BA^2/BC=8^2/10=6,4cm

2: ΔAHB vuông tại H có HI là đường cao

nên AI*AB=AH^2

ΔAHC vuông tại H có HK là đường cao

nên AK*AC=AH^2

=>AI*AB=AK*AC

3: AI*AB=AK*AC

=>AI/AC=AK/AB

Xét ΔAIK và ΔACB có

AI/AC=AK/AB 

góc IAK chung

=>ΔAIK đồng dạng với ΔACB

16 tháng 3 2022

Xét \(\Delta AHB\) vuông tại H và \(\Delta AHC\) vuông tại H:

\(AB=AC\)  (\(\Delta ABC\) cân tại A).

\(\widehat{B}=\widehat{C}\) (\(\Delta ABC\) cân tại A).

\(\Rightarrow\Delta AHB=\) \(\Delta AHC\left(ch-gn\right).\)

\(\Rightarrow\widehat{BAH}=\widehat{CAH}.\)

Xét \(\Delta AMH\) vuông tại M và \(\Delta ANH\) vuông tại N:

\(AHchung.\\ \widehat{MAH}=\widehat{NAH}\left(\widehat{BAH}=\widehat{CAH}\right).\\ \Rightarrow\Delta AMH=\Delta ANH\left(ch-gn\right).\)

Xét \(\Delta AMN:AM=AN\left(\Delta AMH=\Delta ANH\right).\)

\(\Rightarrow\Delta AMN\) cân tại A.

\(\Rightarrow\widehat{AMN}=\dfrac{180^o-\widehat{A}}{2}.\)

Mà \(\widehat{ABC}=\dfrac{180^o-\widehat{A}}{2}\) (\(\Delta ABC\) cân tại A).

\(\Rightarrow\widehat{AMN}=\widehat{ABC}.\\ \Rightarrow MN//BC.\)

8 tháng 7 2021

refer

Cho tam giác ABC vuông tại A.vẽ AH vuông góc với BC tại H.Sao cho:\(BC^2=2AH^2+BH^{^{2^{ }}}+CH^2\) - Hoc24

31 tháng 1 2016

a, phải là cmr: TG AHB=TG AHC

TG AHB và TG AHC có: AH chung; góc AHC=góc AHB (=90 độ) và AB=AC(GT) tùa 3 điều trên =>TG AHB=TG AHC(cgv.ch)(đpcm) và cũng do đó: góc BAH=góc CAH

b,Nối M->N

TG AHM và TG AHN có: AH chung; góc AMH=góc AHN (=90 độ) và góc BAH=góc CAH(cm trên) từ 3 điều trên=>TG AHM = TG AHN(ch.gn)=>AM=AN

Mặt khác TG AMN có AM=AN(cm trên)=>TG AMN(đn tg cân)

c,Ta có: tg ABC có góc A+ góc B+góc C=180 độ(đlí tổng 3 góc tg) mà góc ABC=góc ACB(t/c tg cân)=>góc ABC=góc ACB=180 độ-góc A(1)

Và tg AMN có góc MAN+góc ANM+góc AMN=180 độ mà góc AMN=góc ANM(t/c tg cân)=> góc ANM=góc AMN=180 độ-góc MAN(đlí tổng 3 góc tam giác)(2)

(1) và (2) suy ra: góc ABC=góc ACB=góc ANM=góc AMN(= góc MAN)

góc ABC=góc AMN mà góc ABC và góc AMN là hai góc SLT=>MN ss BC(đpcm)