Cho \(\Delta ABC\) vuông tại A, vẽ \(AH\perp BC\). Trên BC lấy N sao cho BN = BA, trên BC lấy M sao cho CM = CA. Tia phân giác \(\widehat{ABC}\) cắt AM tại I và cắt AN tại D, tia phân giác \(\widehat{ACB}\) cắt AN tại K và cắt AM tại E. Gọi O là giao điểm của BD và CE
a) Chứng minh \(BD\perp AN,CE\perp AM\)
b) Chứng minh BD // MK
c) Chứng minh IK = OA
Chỉ cần làm phần b, c thôi nhé!
b) t/g MCK = t/g ACK (c.g.c)
=> CMK = CAK (2 góc t/ứ)
t/g BAN cân tại A (AB = BN) => BAN = BNA (t/c tam giác cân)
Mà: BAN + CAK = BAC = 90o nên BNA + CMK = 90o
hay MNK + NMK = 90o
từ đó => MKN = 90o
=> MK _|_ AN; BD _|_ AN
=> MK // BD (đpcm)
Hình: