Cho a, b, c, d là những số thực. Hãy so sánh a, b, c, d trong các trường hợp sau :
a) \(\left(a;b\right)\subset\left(c;d\right)\)
b) \(\left[a;b\right]\subset\left(c;d\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{a}{b}< \dfrac{c}{d}\Rightarrow ad< bc\\ \Rightarrow ad+ab< bc+ab\\ \Rightarrow a\left(b+d\right)< b\left(a+c\right)\)
\(\Rightarrow\)\(\dfrac{a}{b}< \dfrac{a+c}{b+d}\)
\(\frac{a}{b}< \frac{c}{d}\)
\(\Rightarrow ad< bc\)
\(\Rightarrow ad+ab< bc+ab\)
\(\Rightarrow a\left(b+d\right)< b\left(a+c\right)\)
\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\)
Vậy \(\frac{a}{b}< \frac{a+c}{b+d}\)
a )
Nếu a + b là số nguyên âm
=> a > b
b )
Nếu a + b là số nguyên dương :
=> a > b
Vì b < 0 nên dù trong trường hợp nào b cũng âm và a dương
Số dương đương nhiên lớn hơn số âm
a) \(c\le a< b\le d\)
b) \(c< a\le b< d\)