giúp em câu 12 với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu 1:
gọi hóa trị của các nguyên tố cần tìm là \(x\)
\(\rightarrow H^I_1Br^x_1\rightarrow I.1=x.1\rightarrow x=I\)
vậy \(Br\) hóa trị \(I\)
\(\rightarrow H_2^IS_1^x\rightarrow I.2=x.1\rightarrow x=II\)
vậy \(S\) hóa trị \(II\)
\(\rightarrow Na_2^xO^{II}_1\rightarrow x.2=II.1\rightarrow x=I\)
vậy \(Na\) hóa trị \(I\)
các ý còn lại làm giống nhé!
câu 2:
gọi hóa trị của \(Fe\) và \(Al\) trong các hợp chất là \(x\)
\(\rightarrow Fe^x_1O^{II}_1\rightarrow x.1=II.1\rightarrow x=II\)
vậy \(Fe\) hóa trị \(II\)
\(\rightarrow Al_2^x\left(SO_4\right)_3^{II}\rightarrow x.2=II.3\rightarrow x=III\)
vậy \(Al\) hóa trị \(III\)
mấy ý còn lại làm tương tự
1.
Do $a>1$ nên $a-1>0; 2a+1>0$. Khi đó
$A=\sqrt{(a-1)^2(2a+1)^2}=\sqrt{(a-1)^2}.\sqrt{(2a+1)^2}$
$=|a-1|.|2a+1|=(a-1)(2a+1)$
2.
$B=\sqrt{(b-1)(b+7)+16}=\sqrt{b^2+6b-7+16}=\sqrt{b^2+6b+9}$
$=\sqrt{(b+3)^2}=|b+3|=-(b+3)$ do $b+3<0$ với mọi $b< -3$
\(1,\\ x+2\ge0\Leftrightarrow x\ge-2\)
\(\Leftrightarrow A=\)\([-2;+\infty)\)
\(5-x\ge0\Leftrightarrow x\le5\)
\(\Leftrightarrow B=\)\((-\infty;5]\)
\(\Leftrightarrow A\cap B=\left[-2;5\right]\)
\(2,A\cup B=\varnothing\)
1.
Phương trình có 2 nghiệm dương pb khi:
\(\left\{{}\begin{matrix}\Delta'=\left(m+1\right)^2-\left(2m+46\right)=m^2-45>0\\x_1+x_2=2\left(m+1\right)>0\\x_1x_2=2m+46>0\end{matrix}\right.\) \(\Rightarrow m>3\sqrt{5}\)
Khi đó:
\(\left|\sqrt{x_1}-\sqrt{x_2}\right|=2\)
\(\Leftrightarrow x_1+x_2-2\sqrt{x_1x_2}=4\)
\(\Leftrightarrow2\left(m+1\right)-2\sqrt{2m+46}=4\)
\(\Leftrightarrow2m+46-2\sqrt{2m+46}-48=0\)
Đặt \(\sqrt{2m+46}=a>0\)
\(\Rightarrow a^2-2a-48=0\Leftrightarrow\left[{}\begin{matrix}a=8\\a=-6\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{2m+46}=8\)
\(\Rightarrow m=9\)
2.
Kết hợp pt thứ 2 và điều kiện đề bài ta được:
\(\left\{{}\begin{matrix}mx+3y=m+3\\x-3y=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(m+1\right)x=m+5\\x-3y=2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m\ne-1\\x=\dfrac{m+5}{m+1}\\y=\dfrac{-m+3}{3\left(m+1\right)}\end{matrix}\right.\)
Thay vào pt đầu:
\(\Rightarrow\dfrac{2\left(m+5\right)}{m+1}+\dfrac{\left(m-1\right)\left(-m+3\right)}{3\left(m+1\right)}=4\)
\(\Rightarrow m^2-2m-15=0\Rightarrow\left[{}\begin{matrix}m=-5\\m=3\end{matrix}\right.\)
Câu 1:
uses crt;
var a:array[1..100]of integer;
n,i,t:integer;
begin
clrscr;
readln(n);
for i:=1 to n do readln(a[i]);
t:=0;
for i:=1 to n do
if a[i] mod 2<>0 then t:=t+a[i];
writeln(t);
readln;
end.
3: \(\left(3x+5\right)\left(2x-7\right)\)
\(=6x^2-21x+10x-35\)
\(=6x^2-11x-35\)
4: \(\left(5x-2\right)\left(3x+4\right)\)
\(=15x^2+20x-6x-8\)
\(=15x^2+14x-8\)
cau 12:
gọi E là trung điểm AB \(\Rightarrow\)MẸ//BC ; và EN// AC do do ME=BD/2 ;NE= AC/2
\(\Rightarrow\left[\widehat{BD;AC}\right]=\left[\widehat{ME;EN}\right]=90^0\)
\(\Delta MEN\)vuông tại E\(\Rightarrow MN^2=ME^2+NE^2=\left(\dfrac{3a}{2}\right)^2+\left(\dfrac{a}{2}\right)^2=\left(\dfrac{10a^2}{4}\right)\Rightarrow MN=\dfrac{a\sqrt{10}}{2}\)
chọn đáp án A
vẽ hình ở ngoài rồi dán vào ko biết tại sao nó lại thụt xuống dưới