K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
23 tháng 3 2017

Lời giải:

Áp dụng BĐT Cauchy:

\(2\sqrt{a(3a+b)}=\sqrt{4a(3a+b)}\leq \frac{4a+3a+b}{2}\)

Tương tự \(2\sqrt{b(3b+a)}\leq \frac{4b+3b+a}{2}\)

\(\Rightarrow 2(\sqrt{a(3a+b)}+\sqrt{b(3b+a)})\leq \frac{8a+8b}{2}=4(a+b)\)

\(\Rightarrow \sqrt{a(3a+b)}+\sqrt{b(3b+a)}\leq 2(a+b)\)

\(\Rightarrow \frac{a+b}{\sqrt{a(3a+b)}+\sqrt{b(3b+a)}}\geq \frac{a+b}{2(a+b)}=\frac{1}{2}\) (đpcm)

Dấu bằng xảy ra khi \(a=b>0\)