So sánh
a) (1/80)7 với (1/243)6
b) (3/8)5 với (5/243)3
nhanh lên nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/
+ \(\frac{1}{243^6}=\frac{1}{3^6.81^6}=\frac{1}{3^2.3^4.81^6}=\frac{1}{9.81^7}\) (1)
+ \(80< 81\Rightarrow80^7< 81^7\Rightarrow\frac{1}{80^7}>\frac{1}{81^7}\) (2)
+ \(81^7< 9.81^7\Rightarrow\frac{1}{81^7}>\frac{1}{9.81^7}\) (3)
Từ (1) (2) (3) \(\Rightarrow\frac{1}{80^7}>\frac{1}{243^6}\)
b/ Xem lại đề bài
a) 80<243 nên \(\frac{1}{80}>\frac{1}{243}\)
\(\Rightarrow\left(\frac{1}{80}\right)^7>\left(\frac{1}{243}\right)^7\) mà \(\left(\frac{1}{243}\right)^7>\left(\frac{1}{243}\right)^6\)
Nên \(\left(\frac{1}{80}\right)^7>\left(\frac{1}{243}\right)^6\)
b) Ta so sánh \(\frac{3}{8}\) với \(\frac{5}{243}\)
Ta có: \(\frac{3}{8}=\frac{3.243}{8.243}=\frac{729}{1944}\)
\(\frac{5}{243}=\frac{5.8}{243.8}=\frac{40}{1944}\)
Suy ra: \(\frac{3}{8}>\frac{5}{243}\)
\(\Rightarrow\left(\frac{3}{8}\right)^5>\left(\frac{5}{243}\right)^5\) mà \(\left(\frac{5}{243}\right)^5>\left(\frac{5}{243}\right)^3\)
Nên \(\left(\frac{3}{8}\right)^5>\left(\frac{5}{243}\right)^3\)
a) Ta có: \(\left(\dfrac{1}{243}\right)^6=\left(\dfrac{1}{3}\right)^{5\cdot6}=\left(\dfrac{1}{3}\right)^{30}\)
\(\Leftrightarrow\left(\dfrac{1}{3}\right)^{28}>\left(\dfrac{1}{243}\right)^6\)
\(\Leftrightarrow\left(\dfrac{1}{3^4}\right)^7>\left(\dfrac{1}{243}\right)^6\)
\(\Leftrightarrow\left(\dfrac{1}{81}\right)^7>\left(\dfrac{1}{243}\right)^6\)
mà \(\left(\dfrac{1}{80}\right)^7>\left(\dfrac{1}{81}\right)^7\)
nên \(\left(\dfrac{1}{80}\right)^7>\left(\dfrac{1}{243}\right)^6\)
\(\left(\dfrac{3}{8}\right)^5\&\left(\dfrac{5}{243}\right)^3\)
\(\left(\dfrac{3}{8}\right)^5=\left(\dfrac{90}{240}\right)^5=\dfrac{90^5}{240^5}\)
\(\left(\dfrac{5}{243}\right)^3=\dfrac{5^3}{243^3}\)
\(=>\dfrac{90^5}{240^5}>\dfrac{5^3}{243^3}\)
\(=>\left(\dfrac{3}{8}\right)^5>\left(\dfrac{5}{243}\right)^3\)
B sẽ nhỏ hơn
=> Vì ( -1 / 243 ) ^ 6 sẽ là số nguyên âm
=> Mà ( 1/80 ) ^ 7 sẽ là số nguyên dương
=> A > B
Ủng hộ nhé ! Bấm Đúng nếu thấy mình trả lời đúng !
a) \(\left(\frac{1}{80}\right)^7>\left(\frac{1}{81}\right)^7=\left(\frac{1}{3^4}\right)^7=\frac{1}{3^{4.7}}=\frac{1}{3^{28}}\)
\(\left(\frac{1}{243}\right)^6=\left(\frac{1}{3^5}\right)^6=\frac{1}{3^{3.6}}=\frac{1}{3^{30}}\)
Vì \(\frac{1}{3^{28}}< \frac{1}{3^{30}}\left(3^{28}< 3^{30}\right)\)
Nên \(\left(\frac{1}{80}\right)^7< \left(\frac{1}{243}\right)^6\)
b) \(\left(\frac{3}{8}\right)^5=\frac{3^5}{\left(2^3\right)^5}=\frac{243}{2^{3.5}}=\frac{243}{2^{15}}>\frac{243}{3^{15}}>\frac{125}{3^{15}}\)
\(=\frac{5^3}{\left(3^5\right)^3}=\frac{5^3}{3^{5.3}}=\frac{5^3}{3^{15}}=\left(\frac{5}{243}\right)^3\)
\(\Rightarrow\left(\frac{3}{8}\right)^5>\left(\frac{5}{243}\right)^3\)
a, Ta có: \(\left(\dfrac{1}{80}\right)^7>\left(\dfrac{1}{81}\right)^7=\left(\dfrac{1}{3^4}\right)^7=\left(\dfrac{1}{3}\right)^{28}=\dfrac{1}{3^{28}}\)
\(\left(\dfrac{1}{243}\right)^6=\left(\dfrac{1}{3^5}\right)^6=\left(\dfrac{1}{3}\right)^{30}=\dfrac{1}{3^{30}}\)
Vì \(\dfrac{1}{3^{28}}>\dfrac{!}{3^{30}}\Rightarrow\left(\dfrac{1}{81}\right)^7>\left(\dfrac{1}{243}\right)^6\Rightarrow\) \(\left(\dfrac{1}{80}\right)^7>\left(\dfrac{1}{243}\right)^6\)
b, Ta có: \(\left(\dfrac{3}{8}\right)^5=\dfrac{3^5}{\left(2^3\right)^5}=\dfrac{243}{2^{15}}>\dfrac{243}{3^{15}}>\dfrac{125}{3^{15}}=\dfrac{5^3}{\left(3^5\right)^3}=\left(\dfrac{5}{243}\right)^3\)
\(\Rightarrow\left(\dfrac{3}{8}\right)^5>\left(\dfrac{5}{243}\right)^3\)
tội bạn hè