Với n là số tự nhiên chẵn; chứng minh 20n + 16n - 3n - 1 chia hết cho 323
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 2 số tự nhiên liên tiếp thì 1 trong 2 số luôn là số chẵn . Vì khi số chẵn nhân với số lẻ là số chẵn gấp lên nhiều lần nên sẽ là số chẵn (Vì số chẵn khi cộng với nhiều lần chính nó vẫn ra là số chẵn).
b , Tương tự như a khi số lẻ nhân với số chẵn vẫn ra số chẵn . Nếu n là số lẻ thì n+5 là số chẵn mà số lẻ nhân với số chẵn ra số chẵn nên n . ( n+5 ) là số chẵn . Nếu n là số chẵn thì n vẫn là số chẵn mà số lẻ nhân với số chẵn nên n . (n+5) là số chẵn .
Vậy mọi trường hợp n. ( n+5 ) với n là số tự nhiên đều ra số chẵn .
a/ Theo đề bài số bị chia bằng 165 lần số chia. Nếu bớt số bị chia đi 143 thì số bị chia mới gấp 154 lần số chia
Nếu chia số chia là 1 phần thì số bị chia ban đầu là 165 phần và số bị chia mới là 154 phần
Xét số bị chia ban đầu và số bị chia mới Hiệu số phần bằng nhau là
165-154=11 phần
Giá trị 1 phần hay số chia là
143:11=13
Số bị chia ban đầu là
13x165=2145
5/
Nếu n chẵn => n+3 lẻ => n(n+3) chẵn
Nếu n lẻ => n+3 chẵn => n(n+3) chẵn
=> n(n+3) chẵn với mọi n
Xét tích \(n\left(n+3\right)\) sẽ có 1 số lẻ và 1 số chẵn
Mà lẻ . chẵn = chẳn
=> đpcm
a/ Theo bạn viết thì n thuộc N và n là số chẵn hoặc số lẻ
- Nếu n là số chẵn thì số chẵn nhân với số nào cũng là số chẵn nhé!!!!
- Nếu n là số lẻ thì ( n + 3 ) là số chẵn vì số lẻ + số lẻ là số chẵn và số chẵn nhân với số nào cũng là số chẵn.
Suy ra: n (n + 3 ) luôn là số chẵn với mọi n.
b/ n( n + 1 ) ( n + 5 ) mở ngoặc ra ta có:
n.n+1.n+5 = (n.n.n) + (1+5) = 3n + 6
Theo tính chất chia hết của một tổng, suy ra: 3n chia hết cho 3 và 6 chia hết cho 3
KL: n(n+1)(n+5) luôn là một số chia hết cho 3
Nếu n là chẵn thì n+1 là lẻ.
Ta có: n.(n+1) là chẵn nhân lẻ nên sẽ có kết quả n.(n+1) là chẵn.
Nếu n là lẻ thì n+1 là chẵn
Ta có: n.(n+1) là lẻ nhân chẵn nên sẽ có kết quả n.(n+1) là chẵn
Vậy n . ( n + 1 ) là số chẵn với mọi số tự nhiên n
xet n=2k =>n chia het cho 2
xét n=2k+1=>n+1=2k+1+1=2k+2=2(k+1) chia hết cho 2
vay n.(n+1) la so chan voi moi so tu nhien n
+ nếu n là số lẻ thì n + 7 là số chẵn => n(n + 7) là số chẵn
+ nếu n là số chẵn thì n(n + 7) là số chẵn
Vậy với mọi số n thì n(n + 7) là số chẵn
Sẽ có 2 trường hợp
TH1: n là số lẻ
n+7 sẽ bằng 1 số chẵn => n(n+7) là số tự nhiên chẵn
TH2: n là số chẵn
=>n(n+7) là số tự nhiên chẵn vì số chẵn nhân với số nào cũng được tích là 1 số chẵn
\(n\left(n+5\right)\)
+ Với n chẵn:
\(\Rightarrow n⋮2\Rightarrow n\left(n+5\right)⋮2\) là số chẵn với mọi số tự nhiên n
+ Với n lẻ:
\(\Rightarrow n+5⋮2\Rightarrow n\left(n+5\right)⋮2\) là số chẵn với mọi số tự nhiên n
chẵn x lẻ = chẵn và ngược lại lẻ x chẵn = chẵn;nếu N = chẵn thì trong ngoặc = lẻ;chẵn x lẻ = chẵn
nếu N = lẻ thì trong ngoặc bằng chẵn ; lẻ x chẵn = chẵn
tick cho mình nhé
Là số lẻ.
nếu n là số lẻ thì \(n^2\) là số lẻ + n thì thành số chẵn (lẻ + lẻ = chẵn) + 1 nữa là thành số lẻ
nếu n là số chẵn thì \(n^2\) là số chẵn + n thì thành số chẵn (chẵn + chẵn = chẵn) + 1 nữa là thành số lẻ
Nhớ thích nha, làm ơn
Nếu n là số chẵn thì n + 7 là số lẻ
số lẻ . số chẵn = số chẵn ((n+7).n)
nếu n là số lẻ thì n + 7 là số chẵn
số lè . số chẵn = số chẵn (n.(n+7))
Giải:
Đặt \(A=20^n+16^n-3^n-1\)
Ta có: \(323=17.19\). Biến đổi:
\(A=20^n+16^n-3^n-1=\left(20^n-1\right)+\left(16^n-3^n\right)\)
Mà \(n\) là số tự nhiên chẵn
\(\Rightarrow\left\{{}\begin{matrix}20^n-1⋮20-1=19\\16^n-3^n⋮16+3=19\end{matrix}\right.\)\(\Leftrightarrow A⋮19\left(1\right)\)
Mặt khác:
\(A=20^n+16^n-3^n-1=\left(20^n-3^n\right)+\left(16^n-1\right)\)
Mà \(n\) là số tự nhiên chẵn
\(\Rightarrow\left\{{}\begin{matrix}20^n-3^n⋮20-3=17\\16^n-1⋮16+1=17\end{matrix}\right.\)\(\Leftrightarrow A⋮17\left(2\right)\)
\(\left(17;19\right)=1\) và từ \(\left(1\right)\) và \(\left(2\right)\Rightarrow A⋮323\)
Vậy \(20^n+16^n-3^n-1⋮323\) (Đpcm)