tìm x để giá trị biểu thức p= 3x^2-2/3x^2+1 là số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Bổ sung thêm ĐK $x$ nguyên
$P=\frac{(3x^2+1)-3}{3x^2+1}=1-\frac{3}{3x^2+1}$
Để $P$ là số nguyên thì $\frac{3}{3x^2+1}$ là số nguyên
$\Rightarrow 3x^2+1$ là ước dương của $3$
$\Rightarrow 3x^2+1\in\left\{1;3\right\}$
$\Rightarrow x^2\in\left\{0; \frac{2}{3}\right\}$
Vì $x$ nguyên nên $x^2=0$
$\Rightarrow x=0$
Thử lại thấy thỏa mãn.
BÀI 1:
a) \(ĐKXĐ:\) \(x-3\)\(\ne\)\(0\)
\(\Leftrightarrow\)\(x\)\(\ne\)\(3\)
b) \(A=\frac{x^3-3x^2+4x-1}{x-3}\)
\(=\frac{\left(x^3-3x^2\right)+\left(4x-12\right)+11}{x-3}\)
\(=\frac{x^2\left(x-3\right)+4\left(x-3\right)+11}{x-3}\)
\(=x^2+4+\frac{11}{x-3}\)
Để \(A\)có giá trị nguyên thì \(\frac{11}{x-3}\)có giá trị nguyên
hay \(x-3\)\(\notinƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
Ta lập bảng sau
\(x-3\) \(-11\) \(-1\) \(1\) \(11\)
\(x\) \(-8\) \(2\) \(4\) \(14\)
Vậy....
E=(3x2-x+3):(3x+2)=(x-1)+\(\frac{5}{3x+2}\)
\(E\varepsilon Z\Leftrightarrow5⋮\left(3x+2\right)\)\(\Leftrightarrow3x+2=Ư\left(5\right)=\left\{-5;-1;1;5\right\}\)
*\(3x+2=-5\Leftrightarrow x=\frac{-7}{3}\)
*\(3x+2=-1\Leftrightarrow x=-1\)
*\(3x+2=1\Leftrightarrow x=\frac{-1}{3}\)
*\(3x+2=5\Leftrightarrow x=1\)
\(E=\frac{3x^2-x+3}{3x+2}=\frac{3x^2+2x-3x-2+5}{3x+2}=\frac{x\left(3x+2\right)-\left(3x+2\right)+5}{3x+2}\)
\(=\frac{\left(x-1\right)\left(3x+2\right)+5}{3x+2}=x-1+\frac{5}{3x+2}\)
E nguyên khi x nguyên và \(\frac{5}{3x+2}\) nguyên => 5 chia hết cho 3x+2
<=>\(3x+2\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\Leftrightarrow3x\in\left\{-7;-3;-1;3\right\}\)
<=>\(x\in\left\{-\frac{7}{3};-1;-\frac{1}{3};1\right\}\)
vì x nguyên nên x=-1 hoặc x=1
c) ĐKXĐ : \(x\ne4\)
Để biểu thức \(\frac{3x^3-4x^2+x-1}{x-4}\) nguyên với \(x\) nguyên thì :
\(3x^3-4x^2+x-1⋮x-4\)
\(\Leftrightarrow3x^3-12x^2+8x^2-32x+33x-132+131⋮x-4\)
\(\Leftrightarrow3x^2.\left(x-4\right)+8x.\left(x-4\right)+31.\left(x-4\right)+131⋮x-4\)
\(\Leftrightarrow131⋮x-4\)
\(\Leftrightarrow x-4\inƯ\left(131\right)\)
\(\Leftrightarrow x-4\in\left\{-1,1,131,-131\right\}\)
\(\Leftrightarrow x\in\left\{3,5,135,-127\right\}\)
d) ĐKXĐ : \(x\ne-\frac{3}{2}\)
Để biểu thức \(\frac{3x^2-x+1}{3x+2}\) nhận giá trị nguyên với \(x\) nguyên thì :
\(3x^2-x+1⋮3x+2\)
\(\Leftrightarrow3x^2+2x-3x-2+3⋮3x+2\)
\(\Leftrightarrow x.\left(3x+2\right)-\left(3x+2\right)+3⋮3x+2\)
\(\Leftrightarrow3⋮3x+2\)
\(\Leftrightarrow3x+2\inƯ\left(3\right)\)
\(\Leftrightarrow3x+2\in\left\{-1,1,-3,3\right\}\)
\(\Leftrightarrow x\in\left\{-1,-\frac{1}{3},-\frac{5}{3},\frac{1}{3}\right\}\) mà \(x\) nguyên
\(\Rightarrow x=-1\)
a: \(P=\dfrac{2}{3x+2}-\dfrac{1}{3x-2}+\dfrac{4}{9x^2-4}\)
\(=\dfrac{6x-4-3x-2+4}{\left(3x+2\right)\left(3x-2\right)}=\dfrac{3x-2}{\left(3x+2\right)\left(3x-2\right)}=\dfrac{1}{3x+2}\)