Cho đa thức f(x) = \(^{x^{99}}\) - 100\(^{x^{98}}\) + 100\(^{x^{97}}\) - ... + 100x - 1
Vậy f(99) bằng bao nhiêu ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 2 tham khảo tại
Câu hỏi của Hang Le - Toán lớp 7 | Học trực tuyến
Học tốt!!!!
bài 1
A(x)=\(x^{99}-100x^{98}+100x^{97}-100x^{96}+...+100x+1\)
= \(x^{99}-\left(99+1\right)x^{98}+\left(99+1\right)x^{97}-\left(99+1\right)x^{96}+...+\left(99+1\right)x-1\)
thay 99=x ta được:
A(x)=\(x^{99}-\left(x+1\right)x^{98}+\left(x+1\right)x^{97}-\left(x+1\right)x^{96}+...+\left(x+1\right)x-1\)
= \(x^{99}-x^{99}-x^{98}+x^{98}+x^{97}-x^{97}-x^{96}+...+x^2+x-1\)
=x-1
thay x=99 vào đa thức A(x) ta được :
A(99)=99-1
=98
vậy tại x=99 thì giá trị của A(x)=98
bài 2:
tại x=1 thay vào đa thức P(x) ta được :
P(1)=\(100.1^{100}+99.1^{99}+...+2.1^2+1\)
= 100+99+...+2+1
=5050
vậy tại x=1 thì giá trị của P(x)=5050
a)\(f\left(x\right)=x^{100}+x^{99}+x^{98}+...+x+1\)chia cho \(g\left(x\right)=x-1\)
Ta có:\(f\left(x\right)=x^{100}+x^{99}+x^{98}+...+x+1\)
\(=x^{99}\left(x-1\right)+x^{98}\left(x-1\right)+...+\left(x-1\right)-99x+2\)
Vì x-1 chia hết cho x-1 nên \(x^{99}\left(x-1\right)+x^{98}\left(x-1\right)+...+\left(x-1\right)\)chia hết cho x-1
Do đó \(x^{99}\left(x-1\right)+x^{98}\left(x-1\right)+...+\left(x-1\right)-99x+2\) cha x-1 dư 2-99x
Vậy \(f\left(x\right)=x^{100}+x^{99}+x^{98}+...+x+1\)chia cho \(g\left(x\right)=x-1\) dư 2-99x
Không biết có đúng ko nữa
a/ Trước tiên ta chứng minh với mọi số tự nhiên \(n\ge1\)
\(x^n-1⋮\left(x-1\right)\)điều này dễ chứng minh nên mình bỏ qua nhé.
Ta có:
\(f\left(x\right)=x^{100}+x^{99}+...+x+1\)
\(=\left(x^{100}-1\right)+\left(x^{99}-1\right)+...+\left(x-1\right)+101\)
Vậy f(x) chia cho g(x) dư 101.
Ta thấy
\(f\left(x\right):g\left(x\right)\)
\(\Rightarrow\left(x^{100}+x^{99}+x^{98}+x^5+2020\right):\left(x^2-1\right)\)
\(=\left(x^{98}+x^{97}+2x^{96}+2x^{95}+...2x^4+3x^3+2x^2+3x+2\right)\) có số dư là \(R\left(x\right)=3x+2022\)
\(\Rightarrow R\left(2021\right)=3.2021+2022=8085\)
\(f\left(x\right)=x^{99}-100x^{98}+100x^{97}-...+100x-1\)
\(f\left(99\right)=99^{99}-100\cdot99^{98}+100\cdot99^{97}-...+100\cdot99-1\)
\(f\left(99\right)=99^{99}-\left(99+1\right)\cdot99^{98}+\left(99+1\right)\cdot99^{97}-...+\left(99+1\right)\cdot99-1\)
\(f(99)= 99^{99}-99^{99}-99^{98}+99^{98}+99^{97}-99^{97}-99^{96}+...+99^2+99-1\)
\(f\left(99\right)=99-1=98\)
Chắc là -100 nhé bn!!!