K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 3 2017

\(f\left(x\right)=-x^2-5x-10=-\left(x^2+2x\cdot\dfrac{5}{2}+\left(\dfrac{5}{2}\right)^2\right)+\left(\dfrac{5}{2}\right)^2-10\)

\(f\left(x\right)=-\left(x+\dfrac{5}{2}\right)^2-\dfrac{15}{4}\)

ta thay \(-\left(x+\dfrac{5}{2}\right)^2\le0\)

\(\Rightarrow-\left(x+\dfrac{5}{2}\right)^2-\dfrac{15}{4}\le-\dfrac{15}{4}\)

\(\Rightarrow-\left(x+\dfrac{5}{2}\right)^2-\dfrac{15}{4}< 0\)

suy ra da thuc f(x) vo nghiem

f(x)=x^2-6x+9+1=(x-3)^2+1>=1>0 với mọi x

=>F(x) vô nghiệm

NV
18 tháng 3 2023

\(f\left(x\right)=x^2-6x+9+1=\left(x-3\right)^2+1\)

Do \(\left\{{}\begin{matrix}\left(x-3\right)^2\ge0\\1>0\end{matrix}\right.\) ;\(\forall x\)

\(\Rightarrow\left(x-3\right)^2+1>0\) ;\(\forall x\)

\(\Rightarrow f\left(x\right)\) vô nghiệm

a: h(x)=4x^2-x+2-x^2-5x+1=3x^2-6x+3

b: bậc là 2

c: h(-1)=3+6+3=12

=>x=-1 ko là nghiệm của h(x)

16 tháng 4 2022

\(x^2-5x+30=x^2-2.\dfrac{5}{2}.x+\left(\dfrac{5}{2}\right)^2-\left(\dfrac{5}{2}\right)^2+30=\left(x-\dfrac{5}{2}\right)^2+\dfrac{95}{4}\ge\dfrac{95}{4}>0\) => Đa thức vô nghiệm \(\forall x\)

16 tháng 4 2022

x2−5x+30=x2−2.52.x+(52)2−(52)2+30=(x−52)2+954≥954>0x2−5x+30=x2−2.52.x+(52)2−(52)2+30=(x−52)2+954≥954>0 

=> Đa thức

=> Vô nghiệm ∀x

a) Ta có: \(f\left(x\right)=5x^4+x^3-x+11+x^4-5x^3\)

\(=\left(5x^4+x^4\right)+\left(x^3-5x^3\right)-x+11\)

\(=6x^4-4x^3-x+11\)

Ta có: \(g\left(x\right)=2x^2+3x^4+9-4x^2-4x^3+2x^4-x\)

\(=\left(3x^4+2x^4\right)-4x^3+\left(2x^2-4x^2\right)-x+9\)

\(=5x^4-4x^3-2x^2-x+9\)

b) Ta có: h(x)=f(x)-g(x)
\(=6x^4-4x^3-x+11-5x^4+4x^3+2x^2+x-9\)

\(=x^4+2x^2+2\)

`a,`

`F(x)=4x^4-2+2x^3+2x^4-5x+4x^3-9`

`F(x)=(2x^4+4x^4)+(2x^3+4x^3)-5x+(-2-9)`

`F(x)=6x^4+6x^3-5x-11`

`b,`

`K(x)=F(x)+G(x)`

`K(x)=(6x^4+6x^3-5x-11)+(6x^4+6x^3-x^2-5x-27)`

`K(x)=6x^4+6x^3-5x-11+6x^4+6x^3-x^2-5x-27`

`K(x)=(6x^4+6x^4)+(6x^3+6x^3)-x^2+(-5x-5x)+(-11-27)`

`K(x)=12x^4+12x^3-x^2-10x-38`

`c,`

`H(x)=F(x)-G(x)`

`H(x)=(6x^4+6x^3-5x-11)-(6x^4+6x^3-x^2-5x-27)`

`H(x)=6x^4+6x^3-5x-11-6x^4-6x^3+x^2+5x+27`

`H(x)=(6x^4-6x^4)+(6x^3-6x^3)+x^2+(-5x+5x)+(-11+27)`

`H(x)=x^2+16`

Đặt `x^2+16=0`

Ta có: \(x^2\ge0\text{ }\forall\text{ }x\)

`->`\(x^2+16\ge16>0\text{ }\forall\text{ }x\)

`->` Đa thức `H(x)` vô nghiệm.

16 tháng 4 2023

Mình cần gấp lắm r, giúp mình với

 

AH
Akai Haruma
Giáo viên
26 tháng 7 2021

Lời giải:
$2x^2+12x+19=2(x^2+6x+9)+1$

$=2(x+3)^2+1\geq 2.0+1=1>0$ với mọi $x\in\mathbb{R}$

Tức là $2x^2+12x+19\neq 0$ với mọi $x\in\mathbb{R}$

Vậy đa thức đó vô nghiệm.

26 tháng 7 2021

`2x^2+12x+19`

`=2(x^2+6x+19/2)`

`=2(x^2+2.x.3+9+1/2)`

`=2(x^2+2.x.3+3^2)+2.1 /2`

`=2(x+3)^2+1`

Ta thấy : `2(x+3)^2>=0`

`=>2(x+3)^2+1>=1>0`

Vậy đa thức đã cho vô nghiệm

2 tháng 5 2017

tại f(x) = x2 -x -x + 2 =0 ta có
x(x-1) -(x-1) +1 =0
(x-1)(x-1) +1 =0
(x-1)2 +1 =0          (1)
Vì (x-1)2 \(\ge\)0
nên \(\left(x-1\right)^2+1\ge1>0\)
Vậy (1) là vô lí
Do đó đa thức f(x) = x^2 -x -x +2 vô nghiệm 
 

24 tháng 5 2021

Ta có f(x) = x2 + x + 1 = \(\left(x^2+\frac{1}{2}x\right)+\left(\frac{1}{2}x+\frac{1}{4}\right)+\frac{3}{4}=x\left(x+\frac{1}{2}\right)+\frac{1}{2}\left(x+\frac{1}{2}\right)+\frac{3}{4}\)

\(=\left(x+\frac{1}{2}\right)\left(x+\frac{1}{2}\right)+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\left(\text{vì }\left(x+\frac{1}{2}\right)^2\ge0\forall x\right)\)

=> f(x) vô nghiệm