Cho đa thức \(f\left(x\right)=ax^2+bx+c\) với \(a,b,c\in Z\) biết đa thức \(⋮5\) với \(\forall x\in Z\). Chứng minh \(a,b,c⋮5\)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
10 tháng 4 2020
Vì \(P\left(x\right)=ax^2+bx+c\) với mọi x
=> Ta có:
Với x = 0 => \(P\left(0\right)=c⋮5\)
Với x = 1 => \(P\left(1\right)=a+b+c⋮5\Rightarrow a+b⋮5\)
Với x = -1 => \(P\left(-1\right)=a-b+c⋮5\Rightarrow a-b⋮5\)
=> ( a + b ) + ( a - b ) \(⋮\)5
=> 2a \(⋮\)5
=> a \(⋮\)5
=> b \(⋮\)5
30 tháng 3 2017
Câu thay từng giá trị của P(0) ; đến P(1) ; ...rồi trừ đi khi nào ra 2a chia hết cho 5 thì thôi
20 tháng 4 2016
Ta có: x là số nguyên và x chia hết cho 5
=> \(ax^3\)chia hết cho 5
\(bx^2\)chia hết cho 5
\(cx\)chia hết cho 5
\(d\)chia hết cho 5
Suy ra cả a,b,c,d đều chia hết cho 5
\(\left\{{}\begin{matrix}f\left(0\right)⋮5\Rightarrow c⋮5\\f\left(1\right)⋮5\Rightarrow\left(a+b+c\right)⋮5\\f\left(-1\right)⋮5\Rightarrow\left(a-b+c\right)⋮5\\\left[\left(a+b+c\right)+\left(a-b+c\right)\right]=2\left(a+c\right)⋮5\Rightarrow a⋮5\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}c⋮5\\a⋮5\\b⋮5\end{matrix}\right.\)+> dpcm