Tìm GTNN của:
x2 -4x +y2 -8y +8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=-\left(x^2+4x+4\right)-\left(y^2-8y+16\right)+22\\ =-\left(x^2+2x.2+2^2\right)-\left(y^2-2.y.4+4^2\right)+22\\ =-\left(x+2\right)^2-\left(y-4\right)^2+22\\ Vậy:max_C=22.khi.x=-2.và.y=4\)
\(a,M=x^2-4x+5=\left(x-2\right)^2+5\\ \Rightarrow M\ge5\)
Dấu "=" xảy ra \(\Leftrightarrow x=2\)
\(b,N=y^2-y-3=\left(y-\dfrac{1}{2}\right)^2-\dfrac{13}{4}\\ \Rightarrow N\ge-\dfrac{13}{4} \)
Dấu "=" xảy ra \(\Leftrightarrow y=\dfrac{1}{2}\)
\(P=x^2+y^2-4x+y+7=\left(x-2\right)^2+\left(y+\dfrac{1}{2}\right)^2+\dfrac{11}{4}\\ \Rightarrow P\ge\dfrac{11}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-\dfrac{1}{2}\end{matrix}\right.\)
a: M=x^2-4x+4+1
=(x-2)^2+1>=1
Dấu = xảy ra khi x=2
b: N=y^2-y+1/4-13/4
=(y-1/2)^2-13/4>=-13/4
Dấu = xảy ra khi y=1/2
c: P=x^2-4x+4+y^2+y+1/4+11/4
=(x-2)^2+(y+1/2)^2+11/4>=11/4
Dấu = xảy ra khi x=2 và y=-1/2
`A=x^2-4x+y^2-8y+6`
`A=x^2-4x+4+y^2-8y+16-14`
`A=(x-2)^2+(y-4)^2-14`
VÌ `(x-2)^2+(y-4)^2>=0`
`=>(x-2)^2+(y-4)^2-14>=-14`
`=>A>=-14`
Dấu "=" xảy ra khi `x-2=0,y-4=0<=>{(x=2),(y=4):}`
Tạo độ giao điểm của 2 dường tròn thỏa mãn hệ phương trình:
⇔
⇔
Vậy toạ độ giao điểm là A( 1; 2) .
Chọn B.
\(B=y^2-y+1\)
\(=y^2-2\cdot y\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-\dfrac{1}{4}+1\)
\(=\left(y-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Ta thấy: \(\left(y-\dfrac{1}{2}\right)^2\ge0\forall y\)
\(\Rightarrow\left(y-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall y\)
Dấu \("="\) xảy ra \(\Leftrightarrow y-\dfrac{1}{2}=0\Leftrightarrow y=\dfrac{1}{2}\)
Vậy \(B_{min}=\dfrac{3}{4}\) khi \(y=\dfrac{1}{2}\).
\(---\)
\(C=x^2-4x+y^2-y+5\)
\(=\left(x^2-4x+4\right)+\left(y^2-y+\dfrac{1}{4}\right)+\dfrac{3}{4}\)
\(=\left(x^2-2\cdot x\cdot2+2^2\right)+\left[y^2-2\cdot y\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2\right]+\dfrac{3}{4}\)
\(=\left(x-2\right)^2+\left(y-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Ta thấy: \(\left(x-2\right)^2\ge0\forall x\)
\(\left(y-\dfrac{1}{2}\right)^2\ge0\forall y\)
\(\Rightarrow\left(x-2\right)^2+\left(y-\dfrac{1}{2}\right)^2\ge0\forall x;y\)
\(\Rightarrow\left(x-2\right)^2+\left(y-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x;y\)
Dấu \("="\) xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y-\dfrac{1}{2}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=\dfrac{1}{2}\end{matrix}\right.\)
Vậy \(C_{min}=\dfrac{3}{4}\) khi \(x=2;y=\dfrac{1}{2}\).
\(Toru\)
\(B=y^2-y+1\)
\(=y^2-2.y.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}=\left(y-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Vì \(\left(y-\dfrac{1}{2}\right)^2\ge0\forall y\Rightarrow B\ge\dfrac{3}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow y=\dfrac{1}{2}\)
\(C=x^2-4x+y^2-y+5\)
\(=x^2-4x+4+y^2-y+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x-2\right)^2+\left(y-\dfrac{1}{2}\right)^2\)
Vì \(\left(x-2\right)^2+\left(y-\dfrac{1}{2}\right)^2\ge0\forall x,y\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=\dfrac{1}{2}\end{matrix}\right.\)
Cách 1 : Xác định các hệ số a, b, c.
a) x2 + y2 – 2x – 2y – 2 = 0 có hệ số a = 1 ; b = 1 ; c = –2
⇒ tâm I (1; 1) và bán kính
b) 16x2 + 16y2 + 16x – 8y –11 = 0
⇒ Đường tròn có tâm , bán kính
c) x2 + y2 - 4x + 6y - 3 = 0
⇔ x2 + y2 - 2.2x - 2.(-3).y - 3 = 0
có hệ số a = 2, b = -3,c = -3
⇒ Đường tròn có tâm I(2 ; –3), bán kính
Cách 2 : Đưa về phương trình chính tắc :
a) x2 + y2 - 2x - 2y - 2 = 0
⇔ (x2 - 2x + 1) + (y2 - 2y +1) = 4
⇔(x-1)2 + (y-1)2 = 4
Vậy đường tròn có tâm I(1 ; 1) và bán kính R = 2.
b) 16x2 + 16y2 + 16x - 8y - 11 = 0
Vậy đường tròn có tâm và bán kính R = 1.
c) x2 + y2 - 4x + 6y -3 = 0
⇔ (x2 - 4x + 4) + (y2 + 6y + 9) = 4 + 9 + 3
⇔ (x - 2)2 + (y + 3)2 = 16
Vậy đường tròn có tâm I( 2 ; –3) và bán kính R = 4.
a) x2 +x +1 = x2 + x + 1/4 + 3/4 =(x+1/2)2 + 3/4
=> GTNN a) =3/4 khi x=-1/2
b) 4x2 +4x -5 = 4x2 + 4x +1 -6 = (2x+1)2-6
=> GTNN b) = -6 khi x=-1/2
c) (x-3)(x+5) +4 = x2+2x -11 = x2+2x +1-12=(x+1)2-12
GTNN c) =12 khi x=-1
d) x2-4x+y2-8y+6=x2-4x+4+y2-8y+16-14=(x-2)2+(y-4)2-14
GTNN d) =-14 khi x=2 , y=4
\(a,=\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Dấu \("="\Leftrightarrow x=-\dfrac{1}{2}\)
\(b,=\left(4x^2+4x+1\right)-6=\left(2x+1\right)^2-6\ge-6\)
Dấu \("="\Leftrightarrow x=-\dfrac{1}{2}\)
\(c,=x^2+2x-15+4=\left(x+1\right)^2-12\ge-12\)
Dấu \("="\Leftrightarrow x=-1\)
\(d,=\left(x^2-4x+4\right)+\left(y^2-8y+16\right)-14=\left(x-2\right)^2+\left(y-4\right)^2-14\ge-14\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=4\end{matrix}\right.\)
\(a,-x^2+2x+5=-\left(x^2-2x-5\right)=-\left(x^2-2x+1-6\right)=-\left(x-1\right)^2+6\le6\)
dấu'=' xảy ra<=>x=1=>Max A=6
\(b,B=-x^2-y^2+4x+4y+2=-x^2+4x-4-y^2+4x-4+10\)
\(=-\left(x^2-4x+4\right)-\left(y^2-4x+4\right)+10\)
\(=-\left(x-2\right)^2-\left(y-2\right)^2+10=-\left[\left(x-2\right)^2+\left(y-2\right)^2\right]+10\le10\)
dấu"=" xảy ra<=>x=y=2=>Max B=10
\(c,C=x^2+y^2-2x+6y+12=\left(x-1\right)^2+\left(y+3\right)^2+2\ge2\)
dấu'=' xảy ra<=>x=1,y=-3=>MinC=2
a) Đây không phải là phương trình đường tròn do có \(xy\).
b) Vì \({a^2} + {b^2} - c = {1^2} + {2^2} - 5 = 0\)nên phương trình đã cho không là phương trình tròn.
c) Vì \({a^2} + {b^2} - c = {\left( { - 3} \right)^2} + {4^2} - 1 = 24 > 0\)nên phương trình đã cho là phương trình tròn có tâm \(I\left( { - 3;4} \right)\) và bán kính \(R = \sqrt {{a^2} + {b^2} - c} = 2\sqrt 6 \).
\(A=x^2-4x+y^2-8y+8\)
\(=\left(x^2-4x+4\right)+\left(y^2-8y+16\right)-12\)
\(=\left(x-2\right)^2+\left(y-4\right)^2-12\ge-12\)
Dấu "=' xảy ra khi \(\left\{{}\begin{matrix}x-2=0\\y-4=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=4\end{matrix}\right.\)