K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2017

\(\Leftrightarrow x^2+y^2+z^2-xy-3y-2z=-4\)

\(\Leftrightarrow\left(x^2+\dfrac{y^2}{4}-xy\right)+\dfrac{3}{4}\left(y^2-4y+4\right)+\left(z^2-2z+1\right)=-4+4=0\)

\(\Leftrightarrow\left(x-\dfrac{y}{2}\right)^2+\dfrac{3}{4}\left(y-2\right)^2+\left(z-1\right)^2=0\)

\(\left\{{}\begin{matrix}z_o-1=0\\y_o-2=0\\x_o-\dfrac{y_o}{2}=0\\\end{matrix}\right.\) \(\left\{{}\begin{matrix}2z_o=2\\3y_o=6\\2x_o-y_o=0\\2\left(x_o+y_o+z_o\right)=8\end{matrix}\right.\) \(\Rightarrow x_o+y_o+z_o=4\)

3 tháng 3 2017

ta có: \(x^2+y^2+z^2-xy-3y-2z+4=0\)

\(\left(x^2-xy+\dfrac{1}{4}y^2\right)+\left(\dfrac{3}{4}y^2-3y+3\right)+\left(z^2-2z+1\right)=0\)

\((x-\dfrac{1}{2}y)^2+3\left(\dfrac{1}{2}y-1\right)^2+\left(z-1\right)^2=0\)

giải 3 bình phương để bằng 0 được x=1;y=2;z=1

13 tháng 12 2015

\(\Leftrightarrow x+y+z-2\sqrt{x}-2\sqrt{y-1}-2\sqrt{z-2}=0\)
\(\Leftrightarrow\left(x-2\sqrt{x}+1\right)+\left(y-1-2\sqrt{y-1}+1\right)+\left(z-2-2\sqrt{z-2}+1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)^2+\left(\sqrt{y-1}-1\right)^2+\left(\sqrt{z-2}-1\right)^2=0\)
\(VT\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow\sqrt{x}=1;\sqrt{y-1}=1;\sqrt{z-2}=1\)
\(\Leftrightarrow x=1;y=2;z=3\)
\(\Rightarrow x^2_0+y^2_0+z^2_0=1^2+2^2+3^2=14\)

NV
20 tháng 6 2020

Mặt cầu tâm \(I\left(2;1;1\right)\) bán kính \(R=3\)

Xét mặt phẳng (P) chứa M có phương trình: \(x+2y+2z-A=0\)

Ta cần tìm A nhỏ nhất sao cho (P) cắt (S) tại ít nhất 1 điểm

\(\Rightarrow d\left(I;\left(P\right)\right)\le R\Leftrightarrow\frac{\left|2+2+2-A\right|}{\sqrt{1^2+2^2+2^2}}\le3\)

\(\Leftrightarrow\left|A-6\right|\le9\Rightarrow-9\le A-6\le9\Rightarrow-3\le A\le15\)

\(\Rightarrow A_{min}=-3\Rightarrow\) phương trình (P): \(x+2y+2z+3=0\)

Pt đường thẳng d qua I và vuông góc (P): \(\left\{{}\begin{matrix}x=2+t\\y=1+2t\\z=1+2t\end{matrix}\right.\)

M là giao điểm (P) và d nên tọa độ thỏa mãn:

\(2+t+2\left(1+2t\right)+2\left(1+2t\right)+3=0\Rightarrow t=-1\Rightarrow M\left(1;-1;-1\right)\)

\(\Rightarrow x+y+z=-1\)

Vì 1/2<>1/3

nên hệ luôn có nghiệm duy nhất

x+y=2 và 2x+3y=m

=>2x+2y=4 và 2x+3y=m

=>-y=4-m và x+y=2

=>y=m-4 và x=2-y=2-m+4=6-m

x+2y<5

=>6-m+2m-8<5

=>m-2<5

=>m<7

=>Có 6 số nguyên dương thỏa mãn

22 tháng 5 2017

Ôn tập chương III

22 tháng 5 2017

Ôn tập chương III

\(\left\{{}\begin{matrix}4x-3y=2\\x+y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x-3y=2\\3x+3y=12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=2\end{matrix}\right.\)

\(5x_0-2y_0=5\cdot2-2\cdot2=6\)

26 tháng 5 2022

\(\left\{{}\begin{matrix}4x-3y=2\\x+y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}16-7y=2\\x=4-y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=4-2=2\end{matrix}\right.\)

\(=>5x_0-2y_0=5.2-2.2=6\)

14 tháng 4 2022

Bài 1.

\(\left\{{}\begin{matrix}x-3y=5-2m\\2x+y=3\left(m+1\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-3y=5-2m\\6x+3y=9m+9\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}7x=7m+14\\x-3y=5-2m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\m+2-3y=5-2m\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\-3y=-3m+3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\y=m-1\end{matrix}\right.\)

\(x_0^2+y_0^2=9m\)

\(\Leftrightarrow\left(m+2\right)^2+\left(m-1\right)^2=9m\)

\(\Leftrightarrow m^2+4m+4+m^2-2m+1-9m=0\)

\(\Leftrightarrow2m^2-7m+5=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}m=1\\m=\dfrac{5}{2}\end{matrix}\right.\) ( Vi-ét )