Cho \(f\left(x\right)=x^{2014}-101\left(x^{2013}-x^{2012}+x^{2011}-...-x^2+x\right)+25\). Khi đó \(f\left(100\right)=?\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
thay x=2014 vào ta có:
f(2014)=20142014-2015.20142013+2015.20142012-2015.20142011+...-2015.2014+2015
=20142014-(2014+1)20142013+(2014+1).20142012-(2014+1).20142011+...-(2014+1).2014+2014+1
=20142014-20142014-20142013+20142013+20142012-20142012-20142011+...-20142-2014+2014+1
=1
x = 2014 => x + 1 = 2015
=> f(2014) = x2014 - (x + 1).x2013 + (x + 1).x2012 - ... - (x + 1).x + x + 1
= x2014 - x2014 - x2013 + x2013 + x2012 - ... - x2 - x + x + 1
= 1
\(f\left(x\right)=x^3-3x^2+3x+3=\left(x-1\right)^3+2\)
Thay vào là OK!!
x=2012
nên x+1=2013
\(f\left(x\right)=x^{2013}-x^{2012}\left(x+1\right)+x^{2011}\left(x+1\right)-...-x^2\left(x+1\right)+x\left(x+1\right)-1\)
\(=x^{2013}-x^{2013}-x^{2012}+x^{2012}-...-x^3-x^2+x^2+x-1\)
=x-1
=2012-1=2011
Bạn kiểm tra lại đề, \(f\left(x\right)=\dfrac{x^3}{1-3x-3x^2}\) hay \(f\left(x\right)=\dfrac{x^3}{1-3x+3x^2}\)
x=100
nên x+1=101
\(f\left(x\right)=x^{2014}-\left(x+1\right)\left(x^{2013}-x^{2012}+...-x^2+x\right)+25\)
\(=x+25\)
=x+25=100+25=125