{46-[(16+71.4):15]}:4 = ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=347\cdot4\cdot9\cdot400:8=347\cdot36\cdot50=624600\)
c: \(=16:\left\{400:\left[200-37-138\right]\right\}\)
\(=16:\left\{400:25\right\}=16:16=1\)
e: \(=46-\left[300:15\right]-2=46-20-2=24\)
Giải;
1) \(347.222-222.\left(216+184\right):8\)
\(=347.222-222.400:8\)
\(=347.222-222.50\)
\(=222.\left(347-50\right)\)
\(=222.297\)
\(=65934\)
2) \(132-\left[116-\left(132-128\right).22\right]\)
\(=132-\left[116-4.22\right]\)
\(=132-\left[116-88\right]\)
\(=132-28\)
\(=104\)
3) \(16:\left\{400:\left[200-\left(37+46.3\right)\right]\right\}\)
\(=16:\left\{400:\left[200-\left(37+138\right)\right]\right\}\)
\(=16:\left\{400:\left[200-175\right]\right\}\)
\(=16:\left\{400:25\right\}\)
\(=16:16\)
\(=1\)
4) \(\left\{184:\left[96-124:31\right]-2\right\}.3651\)
\(=\left\{184:\left[96-4\right]-2\right\}.3651\)
\(=\left\{184:92-2\right\}.3651\)
\(=\left\{2-2\right\}.3651\)
\(=0.3651\)
\(=0\)
5) \(46-\left[\left(16+71.4\right):15\right]-2\)
\(=46-\left[\left(16+284\right):15\right]-2\)
\(=46-\left[300:15\right]-2\)
\(=46-20-2\)
\(=24\)
6) \(3^3.18+72.4^2-41.18\)
\(=18.\left(27-41\right)+72.16\)
\(=18.-14+1152\)
\(=-252+1152\)
\(=900\)
Giải: (tiếp)
7) \(\left(56.46-25.23\right):23\)
\(=\left(2576-575\right):23\)
\(=2001:23\)
\(=87\)
8) \(\left(28.54+56.36\right):21:2\)
\(=\left(1512+2016\right):21:2\)
\(=3528:21:2\)
\(=84\)
9) \(\left(76.34-19.64\right):\left(38.9\right)\)
\(=\left(2584-1216\right):342\)
\(=1368:342\)
\(=4\)
10) \(\left(2+4+6+...+100\right).\left(36.333-108.111\right)\)
\(=\left(2+4+6+...+100\right).\left(11988-11988\right)\)
\(=\left(2+4+6+...+100\right).0\)
\(=0\)
11) \(\left(5.4^{11}-3.16^5\right):4^{10}\)
\(=5.4^{11}:4^{10}-3.16^5:4^{10}\)
\(=5.4-3.1\)
\(=20-3\)
\(=17\)
12) \(7256.4375-725:3650+4375.7255\)
\(=4375.\left(7256+7255\right)-\dfrac{29}{146}\)
\(=4375.14511-\dfrac{29}{146}\)
\(=63485624,8\)
Câu 12 ko chắc!
d) \(\sqrt{46+6\sqrt{5}}=\sqrt{45+2\cdot3\sqrt{5}+1}=\sqrt{\left(3\sqrt{5}\right)^2+2\cdot3\sqrt{5}+1}=\sqrt{\left(3\sqrt{5}+1\right)^2}=\left|3\sqrt{5}+1\right|=3\sqrt{5}+1\)
e) \(\sqrt{9+4\sqrt{2}}=\sqrt{8+2\cdot2\sqrt{2}+1}=\sqrt{\left(2\sqrt{2}\right)^2+2\cdot2\sqrt{2}+1}=\sqrt{\left(2\sqrt{2}+1\right)^2}=\left|2\sqrt{2}+1\right|=2\sqrt{2}+1\)
f) \(\sqrt{16+2\sqrt{15}}=\sqrt{15+2\sqrt{15}+1}=\sqrt{\left(\sqrt{15}+1\right)^2}=\left|\sqrt{15}+1\right|=\sqrt{15}+1\)
d
\(=\sqrt{45+\sqrt{180}+1}=\sqrt{45+\sqrt{36.5}+1}=\sqrt{45+6\sqrt{5}+1}\\ =\sqrt{\left(\sqrt{45}\right)^2+6\sqrt{5}+1}=\sqrt{\left(\sqrt{45}+1\right)^2}=\sqrt{45}+1\)
e
\(=\sqrt{8+\sqrt{32}+1}=\sqrt{8+\sqrt{4.8}+1}=\sqrt{\left(\sqrt{8}\right)^2+2\sqrt{8}+1^2}=\sqrt{\left(\sqrt{8}+1\right)^2}=\sqrt{8}+1\)
f
\(\sqrt{15+2\sqrt{15}+1}=\sqrt{\left(\sqrt{15}+1\right)^2}=\sqrt{15}+1\)
A=4/3+7/6+11/10+16/15+22/21+29/28+37/36+46/45
A = ( 1 + 1/3 ) + ( 1 + 1/6 ) + ( 1 + 1/10 ) + ( 1 + 1/15 ) + ( 1 + 1/21 ) + ( 1 + 1/28 ) + ( 1 + 1/36 ) + ( 1 + 1/45 )
A = ( 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 ) + - ( 1/3 + 1/6 + 1/10 + 1/15 + 1/21 + 1/28 + 1/36 + 1/45 )
A = 8 + 4/5
A = 44/5
A = 4/3 + 7/6 + 11/10 + 16/15 + 22/21 + 29/28 + 37/36 + 46/45
A = ( 1 + 1/3 ) + ( 1 + 1/6 ) + ( 1 + 1/10 ) + ( 1 + 1/15 ) + ( 1 + 1/21 ) + ( 1 + 1/28 ) + ( 1 + 1/36 ) + ( 1 + 1/45 )
A = ( 1 + 1 + 1 + ... + 1 ) - ( 1/3 + 1/6 + 1/10 + 1/15 + 1/21 + 1/28 + 1/36 + 1/45 )
6,5