Hãy cho biết có tồn tại một số tự nhiên có 4 chữ số biết rằng khi viết ngược lại, ta được số gấp 6 lần số phải tìm hay không?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gợi ý: Gọi số cần tìm là abcd. (a # 0), 0 < a, b, c, d < 10. abcd x 4 = dcba nên a có thể nhận giá trị 1 hoặc 2, không thể bằng 3 vì khi đó 4 lần abcd sẽ trở thành số có 5 chữ số. Xét TH1: a = 1, dễ thấy vô lí vì 1bcd x 4 = dcb1. Xét TH2: a = 2, ta có: 2bcd x 4 = dcb2. => d có thể bằng 3 hoặc 8. Xét tiếp từng TH, KL. (Bạn tự giải)
Tìm số tự nhiên có 4 chữ số, biết rằng khi viết ngược số đó lại ta được số mới gấp 4 lần số ban đầu.
Gợi ý:
Gọi số cần tìm là abcd. (a # 0), 0 < a, b, c, d < 10.
abcd x 4 = dcba nên a có thể nhận giá trị 1 hoặc 2, không thể bằng 3 vì khi đó 4 lần abcd sẽ trở thành số có 5 chữ số.
Xét TH1: a = 1, dễ thấy vô lí vì 1bcd x 4 = dcb1.
Xét TH2: a = 2, ta có: 2bcd x 4 = dcb2.
=> d có thể bằng 3 hoặc 8.
Xét tiếp từng TH, KL. (Bạn tự giải)
Gọi số đó là abcd
Ta có : dcba = 4 x abcd
=> dcba chia hết cho 4 => a là chữ số chẵn
Ta thấy a đương nhiên khác 0; và nếu a ≥ 4 thì 4.abcd ≥ 4.4000 > 9999 ≥ dcba
Do vậy a = 2
=> dcba = 4.abcd ≥ 4.2000 = 8000 => d = 8 hoặc d = 9
Ta thấy: 4.8 = 32 ; 4.9 = 36
Vậy d = 8
Ta lại có: dcba = 100.dc +ba = 4.25.dc +ba chia hết cho 4 nên ba chia hết cho 4
Do a =2 nên b chỉ có thể = 1;3;5;7;9
Tuy nhiên nếu b ≥ 3 thì : 8cba = 4.2bcd ≥ 4.2300 = 9200 (vô lý)
Vậy b = 1
Bây giờ ta có: 8c12 = 4.21c8
<=> 8012 +100.c = 4.2108 +4.10.c
<=> 60.c = 420
<=> c = 7
Vậy số cần tìm là: 2178
Đặt số ban đầu là abcd
Sau khi viết ngược là : dcba
Rồi bạn tự giải tiếp nha
Gọi số có 5 chữ số cần tìm là x (x ∈ N; 10000 ≤ x ≤ 99999)
Khi thêm 1 vào bên phải số đó ta được số mới là số có 6 chữ số với chữ số hàng đơn vị là 1:
Khi đó số đã cho là số chục và số mới được viết là: 10x + 1.
Khi thêm 1 vào bên trái số đó ta được số mới là số có 6 chữ số với chữ số hàng trăm nghìn là 1
Khi đó số đã cho là số đơn vị và số mới được viết là: 100000 + x.
Theo đề bài ra nếu viết thêm 1 vào bên phải số đó thì được một số lớn gấp ba lần số nhận được khi ta viết thêm 1 vào bên trái số đó nên ta có phương trình
10x + 1 = 3(100000 + x)
⇔ 7x = 299999
⇔ x = 42857 (tmđk)
Vậy số cần tìm là 42857
Gọi số tự nhiên có 5 chữ số là abcde ( a ; b ; c ; d ; e là các chữ số , a khác 0)
Theo bài cho : abcde * 6 = edcba
=> edcba là số chẵn => a là chữ số chẵn
Vì số edcba có 5 chữ số nên ebcda < 100 000 => abcde * 6 < 100 000 => abcde < 16 667
=> a = 1 là chữ số lẻ. Điều này trái với điều kiện a chẵn=> Không tồn tại số tự nhiên thỏa mãn yêu cầu đề bài
Gọi số tự nhiên có 5 chữ số là: abcde (a;b;c;d;e; là các chữ số ; a khác 0 )
theo bài cho: abcde x 6 = edcba
=> edcba là số chẵn => a là chữ số chẵn
Vì Số edcba có 5 chữ số nên edcba < 100 000 => abcde x 6 < 100 000 => abcde < 16 667
=> a =1 là chữ số lẻ . Điều này trái với điều kiện a chẵn => Không tồn tại số tự nhiên thỏa mãn yêu cầu đề bài
Gọi số cần tìm là abcde
Ta có abcde1 = 3.1abcde
<=> 10.abcde + 1 = 300000 + 3.abcde
<=> 7.abcde = 299999 <=> abcde = 42857