Tính giá trị nhỏ nhất hoặc lớn nhất:
C=\(\dfrac{4\sqrt{x}-8}{2\sqrt{x}+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Để A<0 thì 2*căn x-4<0
=>căn x<2
=>0<=x<4
=>\(x\in\left\{0;1;2;3\right\}\)
b: \(A-2=\dfrac{2\sqrt{x}-4-2\sqrt{x}-2}{\sqrt{x}+1}=\dfrac{-6}{\sqrt{x}+1}< 0\)
=>A<2
c: A<1
=>A-1<0
=>\(\dfrac{2\sqrt{x}-4-\sqrt{x}-1}{\sqrt{x}+1}< 0\)
=>căn x-5<0
=>0<=x<25
d: A>-1
=>A+1>0
=>\(\dfrac{2\sqrt{x}-4+\sqrt{x}+1}{\sqrt{x}+1}>0\)
=>3*căn x-3>0
=>x>1
e: A<=(-x+6căn x-8)/(căn x+1)
=>2*căn x-4<=-x+6căn x-8
=>x-4căn x+4<=0
=>x=4
1, Với \(x\ge0,x\ne1\) ta có :
\(P=\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{x-1}\right):\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-1\right)\)
\(=\dfrac{\sqrt{x}+1+\sqrt{x}}{x-1}:\dfrac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}-1}\)
\(=\dfrac{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{2\sqrt{x}+1}{\sqrt{x}+1}\)
2, Ta có \(P=\dfrac{7}{4}\)
\(\Rightarrow\dfrac{2\sqrt{x}+1}{\sqrt{x}+1}=\dfrac{7}{4}\)
\(\Leftrightarrow4\left(2\sqrt{x}+1\right)=7\left(\sqrt{x}+1\right)\)
\(\Leftrightarrow8\sqrt{x}+4=7\sqrt{x}=7\)
\(\Leftrightarrow\sqrt{x}=3\)
\(\Leftrightarrow x=9\left(tm\right)\)
1) Ta có: \(P=\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{x-1}\right):\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-1\right)\)
\(=\left(\dfrac{\sqrt{x}+1+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{\sqrt{x}-1}{\sqrt{x}-1}\right)\)
\(=\dfrac{2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}-1}{\sqrt{x}-\sqrt{x}+1}\)
\(=\dfrac{2\sqrt{x}+1}{\sqrt{x}+1}\)
2) Để \(P=\dfrac{7}{4}\) thì \(\dfrac{2\sqrt{x}+1}{\sqrt{x}+1}=\dfrac{7}{4}\)
\(\Leftrightarrow4\cdot\left(2\sqrt{x}+1\right)=7\left(\sqrt{x}+1\right)\)
\(\Leftrightarrow8\sqrt{x}+4=7\sqrt{x}+7\)
\(\Leftrightarrow8\sqrt{x}-7\sqrt{x}=7-4\)
\(\Leftrightarrow\sqrt{x}=3\)
hay x=9(nhận)
Vậy: Để \(P=\dfrac{7}{4}\) thì x=9
\(a,B=\dfrac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{1+\sqrt{x}}-\sqrt{x}\\ B=x-\sqrt{x}+1-\sqrt{x}=\left(\sqrt{x}-1\right)^2\)
Mà \(x=4-2\sqrt{3}=\left(\sqrt{3}-1\right)^2\)
\(\Rightarrow B=\left(\sqrt{3}-1-1\right)^2=\left(\sqrt{3}-2\right)^2=7-4\sqrt{3}\)
\(b,P=AB=\dfrac{2x+1-x+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\left(\sqrt{x}-1\right)^2\\ P=\dfrac{\left(x+\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{x+\sqrt{x}+1}=\sqrt{x}-1\\ c,Q=\sqrt{x}+\dfrac{1}{P}=\sqrt{x}+\dfrac{1}{\sqrt{x}-1}\\ Q=\sqrt{x}-1+\dfrac{1}{\sqrt{x}-1}+1\ge2\sqrt{1}+1=3\\ Q_{min}=3\Leftrightarrow\left(\sqrt{x}-1\right)^2=1\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}-1=1\\1-\sqrt{x}=1\end{matrix}\right.\Leftrightarrow\sqrt{x}=2\left(x>1\Leftrightarrow\right)x=4\left(tm\right)\)
a: \(B=\left(\sqrt{x}-1\right)^2=\left(\sqrt{3}-2\right)^2=7-4\sqrt{3}\)
b: \(A=\dfrac{2x+1-x+\sqrt{x}}{x\sqrt{x}-1}\cdot\left(\sqrt{x}-1\right)^2=\sqrt{x}-1\)
Đk: \(x\ge0\)
\(P=\dfrac{\sqrt{x}}{x+3\sqrt{x}+4}\)
\(\Leftrightarrow x.P+\sqrt{x}\left(3P-1\right)+4P=0\) (1)
Xét P=0 <=> x=0(tm)
Xét \(P\ne0\) .Coi pt (1) là phương trình ẩn \(\sqrt{x}\)
Phương trình (1) có nghiệm không âm khi \(\Leftrightarrow\left\{{}\begin{matrix}\Delta\ge0\\S\ge0\\P\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-7P^2-6P+1\ge0\\\dfrac{1-3P}{P}\ge0\\4\ge0\left(lđ\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-1\le P\le\dfrac{1}{7}\\0< P\le\dfrac{1}{3}\end{matrix}\right.\) \(\Rightarrow0< P\le\dfrac{1}{7}\)
Kết hợp với P=0 \(\Rightarrow0\le P\le\dfrac{1}{7}\)
Có \(\dfrac{1}{7}>0\) => maxP=\(\dfrac{1}{7}\). Thay \(P=\dfrac{1}{7}\) vào (1) tìm được x=4 (tm)
minP=0 <=> x=0
Lời giải:
$\frac{\sqrt{x}+1}{\sqrt{x}+4}=\frac{\sqrt{x}+4-3}{\sqrt{x}+4}=1-\frac{3}{\sqrt{x}+4}$
Vì $\sqrt{x}\geq 0$ nên $\sqrt{x}+4\geq 4$
$\Rightarrow \frac{3}{\sqrt{x}+4}\leq \frac{3}{4}$
$\Rightarrow \frac{\sqrt{x}+1}{\sqrt{x}+4}=1-\frac{3}{\sqrt{x}+4}\geq 1-\frac{3}{4}=\frac{1}{4}$
Vậy $M=\frac{1}{4}$
------------------
$N=\frac{\sqrt{x}+5}{\sqrt{x}+2}=1+\frac{3}{\sqrt{x}+2}$
Do $\sqrt{x}\geq 0$ nên $\sqrt{x}+2\geq 2$
$\Rightarrow \frac{3}{\sqrt{x}+2}\leq \frac{3}{2}$
$\Rightarrow \frac{\sqrt{x}+5}{\sqrt{x}+2}\leq 1+\frac{3}{2}=\frac{5}{2}$
Vậy $N=\frac{5}{2}$
$\Rightarrow 2M+N =2.\frac{1}{4}+\frac{5}{2}=3$
Đáp án C.
\(M=3\left(\sqrt{x}+1\right)^2-\left(\sqrt{x}+4\right)^2+14\)
\(=3\left(x+2\sqrt{x}+1\right)-\left(x+8\sqrt{x}+16\right)+14\)
\(=3x+6\sqrt{x}+3-x-8\sqrt{x}-16+14\)
\(=2x-2\sqrt{x}+1\)
\(=2\left(x-4\sqrt{x}+4\right)+6\sqrt{x}-7\)
\(=2\left(\sqrt{x}-2\right)^2+6\sqrt{x}-7\ge2.0+6.\sqrt{4}-7=5\)
Dấu "=" \(x=4\)
Vậy GTNN của M là 4 <=> x = 4
\(\left\{{}\begin{matrix}xz=x+4\left(1\right)\\2y^2=7xz-3x-14\\x^2+y^2=35-z^2\left(3\right)\end{matrix}\right.\left(2\right)\)
Nhận thấy \(x=0\) không là nghiệm của (1) .
\(\rightarrow z=\dfrac{x+4}{x}\)(4)
Thế (1) vào (2) .
\(2y^2=7\left(x+4\right)-3x-14=4x+14\leftrightarrow y^2=2x+7\)(\(x\ge-\dfrac{7}{2}\)) (5)
Thế (4)(5) vào (3)
\(x^2+2x+7=35-\left(\dfrac{x+4}{x}\right)^2\)
\(\Leftrightarrow x^4+2x^3-27x^2+8x+16=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-1\right)\left(x^2+7x+4\right)=0\)\(\)
TH1 : \(x-4=0\Leftrightarrow x=4\Leftrightarrow\left\{{}\begin{matrix}y=\pm\sqrt{15}\\z=2\end{matrix}\right.\)
TH2 : \(x-1=0\Leftrightarrow x=1\Leftrightarrow\left\{{}\begin{matrix}y=\pm3\\z=5\end{matrix}\right.\)
TH3 : \(x^2+7x+4=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-7+\sqrt{33}}{2}\left(TM\right)\\x=\dfrac{-7-\sqrt{33}}{2}\left(KTM\right)\end{matrix}\right.\)
\(\Leftrightarrow x=\dfrac{-7+\sqrt{33}}{2}\Leftrightarrow\left\{{}\begin{matrix}y=\pm\sqrt[4]{33}\\z=-\dfrac{5+\sqrt{33}}{2}\end{matrix}\right.\)
\(C=\dfrac{20\sqrt{x}-16\sqrt{x}-8}{2\sqrt{x}+1}=\dfrac{20\sqrt{x}-8\left(2\sqrt{x}+1\right)}{2\sqrt{x}+1}=\dfrac{20\sqrt{x}}{2\sqrt{x}+1}-8\)
Do \(\left\{{}\begin{matrix}20\sqrt{x}\ge0\\2\sqrt{x}+1>0\end{matrix}\right.\) ; \(\forall x\Rightarrow\dfrac{20\sqrt{x}}{2\sqrt{x}+1}\ge0\) ; \(\forall x\)
\(\Rightarrow C\ge-8\)
\(C_{min}=-8\) khi \(x=0\)