K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2015

có:2B+3=3+2B=3+2*3+2*3²+2*3^3+2*3^4+....... 
=3²+2*3²+2*3^3+2*3^4+....+2*3^100=3^3+... 
=......=3^101 
3^x=3^101 <=> x=101 
bai 2 
bạn nhóm số liên tiếp lại thi tổng của chúng sẽ chia hết chọ 
5+5²+5^3+5^4+5^5+5^6=155*126 chia hết cho 126 
ta có 96/6=16 nhóm 
vậy S chia hết cho 126. 
các số hạng đều có tận cùng là 5 
S có 96 số hạng 
vậy chữ số tận cùng của S là 0

29 tháng 11 2016

S=(5+52+53+54+55+56)+...+(591+592+593+594+595+596)S=(5+52+53+54+55+56)+...+(591+592+593+594+595+596)
=5(1+5+52+53+54+55)+...+591(1+52+53+54+55)=5.3906+...+591.3906=3906(5+...+596)=3.126(5+...+591)=5(1+5+52+53+54+55)+...+591(1+52+53+54+55)=5.3906+...+591.3906=3906(5+...+596)=3.126(5+...+591)
chia hết cho 126

Xin lỗi nha bạn , mình viết dấu mũ không được

10 tháng 12 2015

S=5+5^2+5^3+....+5^96= 
= 5+5^2+5^3+ 5^4+5^5+5^6....+ +5^91 + 5^92+5^93 +5^94 +5^95 +5^96 
=(5+5^2+5^3+ 5^4+5^5+5^6)(1+5^6 + ... +5^90)= 
=5* 126*31*(1+5^6 + ... +5^90)= 5* 126*31*(1+5^4 + ... +5^90) chia hết cho 126 

 

10 tháng 12 2015

Bạn gộp 6 số lại là được 

14 tháng 7 2017

cứ tổng 4 số liên tiếp sẽ chia hết cho 126 => đpcm

14 tháng 7 2017

nhầm tổng 6 số liên tiếp sẽ chia hết chi 126

7 tháng 10 2018

\(S=\left(5+5^4\right)+\left(5^2+5^5\right)+...+\left(5^{93}+5^{96}\right)\)

\(S=5.\left(1+5^3\right)+5^2.\left(1+5^3\right)+...+5^{93}.\left(1+5^3\right)\)

\(S=5.125+5^2.125+...+5^{93}.125\)

\(S=125.\left(5+5^2+...+5^{93}\right)⋮125\)

7 tháng 10 2018

\(S=5+5^2+5^3+...+5^{96}\)(có 96 số, 96 chia hết cho 6)

\(=\left(5+5^2+5^3+5^4+5^5+5^6\right)+...+\left(5^{91}+5^{92}+5^{93}+5^{94}+5^{95}+5^{96}\right)\)

\(=\left(5+5^4\right)+\left(5^2+5^5\right)+\left(5^3+5^6\right)+...+\left(5^{91}+5^{94}\right)+\left(5^{92}+5^{95}\right)+\left(5^{93}+5^{96}\right)\)

\(=5.\left(1+5^3\right)+5^2.\left(1+5^3\right)+...+5^{92}.\left(1+5^3\right)+5^{93}.\left(1+5^3\right)\)

\(=5.126+5^2.126+5^3.126+...5^{91}.126+5^{92}.126+5^{93}.126\)

\(=126.\left(5+5^2+5^3+...+5^{91}+5^{92}+5^{93}\right)\)chia hết cho 126.

Vậy \(S=5+5^2+5^3+...+5^{96}\)chia hết cho 126.

1 tháng 12 2018

a) S = 5 + 5 2 + .... + 5 96

  5S = 5 2 + 5 3 + ... + 5 97

=> 5S - S = ( 5 2 + 5 3 + ... + 5 97 ) - ( 5 + 5 2 + .... + 5 96 )

=> 4S = 5 97 - 5

=> S = \(\frac{5^{97}-5}{4}\)

b) Ta có ;

S = 5 + 5 2 + .... + 5 96

   = ( 5 + 5 2 + 5 3 + 5 4 + 5 5 + 5 6 ) + ..... + ( 5 90 + 5 91  + 5 92 + 5 93 + 5 94 + 5 95 + 5 96 )

   = 5 ( 1 + 5 + 5 2 + 5 3 + 5 4 + 5 5 ) + ..... + 5 90 ( 1 + 5 + 5 2 + 5 3 + 5 4 + 5 5 ) 

   = 5 . 3906 + ... + 5 90 . 3906

   = ( 5 + ... + 5 90 ) . 3906

   =  ( 5 + ... + 5 90 ) . 126 . 31 chia hết cho 126  ( Vì 126 chia hết cho 126 )

Vậy S = 5 + 5 2 + .... + 5 96 chia hết cho 126

14 tháng 10 2015

\(A=5+5^2+5^3+...+ 5^{96}\)

\(5A=5^2+5^3+5^4+...+5^{100}\)

\(5A-A=\left(5^2+5^3+5^4+...+5^{100}\right)-\left(5+5^2+5^3+ ...+5^{99}\right)\)
\(4A=5^{100}-5 \)
\(A=\frac{5^{100}-5}{4}\)

 

19 tháng 9 2020

a) Ta có: \(S=5+5^2+5^3+...+5^{96}\)

        \(\Leftrightarrow S=\left(5+5^4\right)+\left(5^2+5^5\right)+\left(5^3+5^6\right)+...+\left(5^{93}+5^{96}\right)\)

    Vì mỗi cặp của đa thức  \(S\)có hai hạng tử nên tổng số cặp là: \(\frac{96}{2}=48\)( cặp )

         \(\Rightarrow\)Đa thức  \(S\)không dư số nào

        \(\Leftrightarrow S=\left(5+5^4\right)+\left(5^2+5^5\right)+\left(5^3+5^6\right)+...+\left(5^{93}+5^{96}\right)\)

        \(\Leftrightarrow S=5.\left(5^0+5^3\right)+5^2\left(5^0+5^3\right)+5^3.\left(5^0+5^3\right)+...+5^{93}.\left(5^0+5^3\right)\)

        \(\Leftrightarrow S=5.126+5^2.126+5^3.126+...+5^{93}.126\)

        \(\Leftrightarrow S=\left(5+5^2+5^3+...+5^{93}\right).126⋮126\)

Vậy \(S⋮126\)

6 tháng 10 2017

https://olm.vn/hoi-dap/question/418078.html

bn vào là ra =))

2 tháng 1 2018

Thanks ah!Lâu quá mình không vào rồi!