K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Trên tia đối của tia MA, lấy điểm D sao cho MA=MD

Xét tứ giác ACDB có 

M là trung điểm của đường chéo BC

M là trung điểm của đường chéo AD

Do đó: ACDB là hình bình hành

Hình bình hành ACDB có \(\widehat{CAB}=90^0\)

nên ACDB là hình chữ nhật

Suy ra: BC=AD

mà \(AM=\dfrac{1}{2}AD\)

nên \(AM=\dfrac{1}{2}BC\)

24 tháng 8 2021

áp dụng tính chất đường trung tuyến của tam giác vuông

=> AN=1/2BC

24 tháng 8 2021

Bạn có cách làm nào khác ko

 

9 tháng 6 2020

A B C M H K G

A) XÉT \(\Delta ABC\)VUÔNG TẠI 

CÓ AM LÀ TRUNG TUYẾN \(\Rightarrow AM=\frac{1}{2}BC\Leftrightarrow AM=BM=CM\)

XÉT TAM GIÁC AMC CÓ AM=CM => TAM GIÁC AMC CÂN TẠI M

MÀ TRONG TAM GIÁC CÂN ĐƯỜNG CAO CŨNG LÀ TIA PHÂN GIÁC => MH LÀ PHÂN GIÁC CỦA \(\widehat{AMC}\)

\(\Rightarrow\widehat{AMH}=\widehat{HMC}\)

XÉT \(\Delta AMH\)VÀ \(\Delta CMH\)

\(AM=MC\left(CMT\right)\)

\(\widehat{AMH}=\widehat{HMC}\left(CMT\right)\)

MH LÀ CẠNH CHUNG

=>\(\Delta AMH\)=\(\Delta CMH\)(C-G-C)

=> AH= CH ( HAI CẠNH TƯƠNG ỨNG)

=> BH LÀ ĐƯỜNG TRUNG TUYẾN CỦA TAM GIÁC ABC

VÌ HAI TĐƯỜNG TRUNG TUYẾN AM VÀ BH CẮT NHAU TẠI G

=> G LÀ TRỌNG TÂM CỦA TAM GIÁC ABC

B) 

XÉT \(\Delta ABC\)VUÔNG TẠI A

CÓ AM LÀ TRUNG TUYẾN

 \(\Rightarrow AM=\frac{1}{2}BC\left(Đ/L\right)\)P/S CHỈ ÁP DỤNG TRAM GIÁC GIÁC VUÔNG

3 tháng 6 2020

c) Tính chất đường trung tuyến ứng với cạnh huyền của tam giác vuông, bạn lên mạng tham khảo , EZ

a) AM = MC nên tam giác AMC cân tại M nên MH là đường cao cũng là trung tuyến hay H là trung điểm của AC nên BH là trung tuyến của tam giác ABC

Mà AM cũng là trung tuyến của tam giác ABC nên G trọng tâm của tam giác ABC

7 tháng 12 2015

kẻ tia đối AM' của AM sao cho AM=AM'

17 tháng 11 2015

        A B C M
Tam giác ABM và tam giác ACM có :
 AB=AC( GT)
 BM=BC(M là trung điểm của BC)
chung cạnh AM
Do đó , tam giác ABM = tam giác ACM
=> AMB=AMC( hai góc tương ứng)
Ta có : AMB+AMC=180\(^0\)
       mà AMB=AMC=> AMB=90\(^0\)và \(AMC=90^0\)
Vậy AM vuông hóc với BC

 

11 tháng 2 2018

      \(AM=\frac{1}{2}BC\)

\(\Rightarrow\)\(AM=MB=MC\)

   \(\Delta MBA\)cân  tại   \(M\)  

\(\Rightarrow\)\(\widehat{MAB}=\widehat{B}\)     (1)

   \(\Delta MAC\) cân  tại   \(M\)

\(\Rightarrow\)\(\widehat{MAC}=\widehat{C}\)   (2)

Lấy   (1) + (2)  theo vế ta được:

           \(\widehat{MAB}+\widehat{MAC}=\widehat{B}+\widehat{C}\)

 \(\Leftrightarrow\)\(\widehat{BAC}=\widehat{B}+\widehat{C}\)

\(\Delta ABC\)  có:     \(\widehat{BAC}+\widehat{B}+\widehat{C}=180^0\)

\(\Rightarrow\)\(\widehat{BAC}=90^0\)

Vậy   \(\Delta ABC\)\(\perp\)\(A\)

11 tháng 2 2018

      AM=12 BC

AM=MB=MC

   ΔMBAcân  tại   M  

^MAB=^B     (1)

   ΔMAC cân  tại   M

^MAC=^C   (2)

Lấy   (1) + (2)  theo vế ta được:

           ^MAB+^MAC=^B+^C

 ^BAC=^B+^C

ΔABC  có:     ^BAC+^B+^C=1800

^BAC=900

Vậy   ΔABCA