K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2017

2.Áp dụng tc dãy tỉ số bằng nhau ta có:

\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{a+b+c-a+b-c}{a+b-c-a+b+c}=\frac{2b}{2b}=1\)

\(\Rightarrow a+b+c=a+b-c\)

\(\Rightarrow a+b+c-a-b+c=0\)

\(\Rightarrow2c=0\)

\(\Rightarrow c=0\)

Vậy c=0

20 tháng 2 2017

BT5: Ta có: f(1)=1.a+b=1 =>a+b=1 (1)

f(2)=2a+b=4 (2)

Trừ (1) cho (2) ta có: 2a+b-a-b=4-1 => a=3

Với a=3 thay vào (1) ta có: 3+b=1 => b=-2

Vậy a=3, b=-2

22 tháng 2 2017

BT1: 20152014 có tận cùng là 5

    20142015=2014.(20142)1007=2014.40561961007=2014.(...6) => Có tận cùng là ...4

=> 20152014-20142015 có tận cùng là ...5-...4=...1 

BT2: f(1)=a.1+b=1  (1)

       f(2)=a.2+b=4    (2)

Trừ (2) cho (1) => a=3

Thay a=3 vào (1) => b=-2

ĐS: a=3; b=-2

23 tháng 2 2017

Sao ko ai trả lời vậy?! Bộ câu của mình khó quá ak???

20 tháng 10 2018

a) 

Ta có: \(\frac{x+y}{2014}\ne\frac{x-y}{2016}\)

\(\Leftrightarrow2016x+2016y=2014x-2014y\)

\(\Leftrightarrow2x=-4030y\)

\(\Leftrightarrow x=-2015y\)

Thay \(x=-2015y\)vào \(\frac{x+y}{2014}=\frac{xy}{2015}\)ta được:

\(\Leftrightarrow\frac{-2015+y}{2014}=\frac{-2015y}{2015}\)

\(\Leftrightarrow\frac{-2014y}{2014}=\frac{-2015y^2}{2015}\)

\(\Leftrightarrow-y=-y^2\)

\(\Leftrightarrow y-y^2=0\)

\(\Leftrightarrow y\left(1-y\right)=0\)

\(\Rightarrow\orbr{\begin{cases}y=0\\1-y=0\end{cases}}\Rightarrow\orbr{\begin{cases}y=0\\y=1\end{cases}}\)

Trường hợp \(y=0\):

\(y=0\Rightarrow x.y=-2015.0=0\)

Trường hợp \(y=1\):

\(y=1\Rightarrow x.y=-2015.1=-2015\)

21 tháng 3 2019

Bổ sung :

➤ Bài 1 :

c/ Tính f(5)

21 tháng 4 2019

Sửa bài 2 : Tính giá trị của biểu thức M = 4 (a - b) (b - c) = (c - a)2.

21 tháng 10 2015

Áp dụng đẳng thức sau (có thể chứng minh bằng cách nhân tung rút gọn):

\(a^n-1=\left(a-1\right)\left(a^{n-1}+a^{n-2}+...+a^1+1\right)\)

Áp dụng với \(a=x;\text{ }a=\frac{1}{x}...\)

21 tháng 10 2015

nhờ thằng lắm chuyện nó giải giùm cho

21 tháng 11 2016

a)Đặt \(L=\frac{1}{2^{2015}}+\frac{1}{2^{2014}}+...+\frac{1}{2^0}\)

\(2L=\left(1+\frac{1}{2}+...+\frac{1}{2^{2015}}\right)\)

\(2L=2+1+...+\frac{1}{2^{2014}}\)

\(2L-L=\left(2+1+...+\frac{1}{2^{2014}}\right)-\left(1+\frac{1}{2}+...+\frac{1}{2^{2015}}\right)\)

\(2L=2-\frac{1}{2^{2015}}\) thay vào ta có:

\(B=\frac{1}{2^{2016}}-\left(2-\frac{1}{2^{2015}}\right)=\frac{1}{2^{2016}}-2+\frac{1}{2^{2015}}\)

21 tháng 11 2016

b)Ta có:\(\begin{cases}\left|x+1\right|\ge0\\\left|x+4\right|\ge0\end{cases}\)\(\Rightarrow\left|x+1\right|+\left|x+4\right|\ge0\)

\(\Rightarrow VT\ge0\Rightarrow VP\ge0\Rightarrow3x\ge0\Rightarrow x\ge0\)

  • Với \(x\ge0\) ta có

\(x+1+x+4=3x\)

\(\Rightarrow2x+5=3x\Rightarrow x=5\) (thỏa mãn)

Vậy x=5

 

6 tháng 10 2018

Ai giải giúp mình bài 1 với bài 4 trước đi