K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2017

Theo bài ra , ta có :

\(2x^2-2xy+y^2+4x+4=0\)

\(\Rightarrow\left(x^2-2xy+y^2\right)+\left(x^2+4x+4\right)=0\)

\(\Rightarrow\left(x-y\right)^2+\left(x+4\right)^2=0\)

\(\Rightarrow\left\{\begin{matrix}\left(x-y\right)^2=0\\\left(x+4\right)^2=0\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}x-y=0\\x+4=0\end{matrix}\right.\Rightarrow\left\{\begin{matrix}x=y\\x=-4\end{matrix}\right.\)

\(\Rightarrow x=y=-4\)

Thay x = y = -4 vào A ta được

\(A=x^4+y^4\)

\(\Rightarrow A=\left(-4\right)^4+\left(-4\right)^4=2\times\left(-4\right)^4=512\)

Vậy A = 512

Chúc bạn hok tốt =))ok

19 tháng 2 2017

em nhỏ hơn anh một tuổi ák

17 tháng 10 2019

Chọn đáp án B.

DISCOVERY

Một cách tổng quát chúng ta có các kết quả sau:

1) Cho các số thực dương m, n, p khác 1 và thỏa mãn m.p =  n α

Nếu tồn tại các số thực a, b, c thỏa mãn hệ thức 

2) Cho các số thực dương m, n, p khác 1 và thỏa mãn 

 Nếu tồn tại các số thực a, b, c thỏa mãn hệ thức 

23 tháng 1 2019

Đáp án đúng : C

20 tháng 8 2019

9/4...... p ko????

20 tháng 7 2017


9 tháng 2 2021

biến đổi: \(P=1.\left(\dfrac{1}{16x}+\dfrac{1}{4y}+\dfrac{1}{z}\right)=\left(x+y+z\right)\left(\dfrac{1}{16x}+\dfrac{1}{4y}+\dfrac{1}{z}\right)\)

\(P=\left(\dfrac{y}{16x}+\dfrac{x}{4y}\right)+\left(\dfrac{z}{16x}+\dfrac{x}{z}\right)+\left(\dfrac{z}{4y}+\dfrac{y}{z}\right)+\dfrac{21}{16}\)

Áp dụng bất đẳng thức cosi cho từng ngoặc ta được: 

\(\dfrac{y}{16x}+\dfrac{x}{4y}\ge2\sqrt{\dfrac{y}{16x}.\dfrac{x}{4y}}=\dfrac{1}{4}\)

hoàn toàn tương tự: \(\dfrac{z}{16x}+\dfrac{x}{z}\ge\dfrac{1}{2}\)

\(\dfrac{z}{4y}+\dfrac{y}{z}\ge1\)

=> P>=49/16

27 tháng 11 2017

16 tháng 10 2019

Đáp án C.

14 tháng 11 2017

Chọn D