K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2021

a: Xét tứ giác BHCK có 

M là trung điểm của BC

M là trung điểm của HK

Do đó: BHCK là hình bình hành

5 tháng 2 2020

Em kiểm tra lại đề bài . Gọi P, Q là hình chiếu của K trên BC và gì nữa vậy?

13 tháng 7 2020

Gọi N là giao điểm của PQ và AH, gọi M là giao điểm của AH với (O). Khi đó dễ thấy tam giác PHK cân. Do AH//KP nên tứ giác KPMN là hình thang.

Lại có BPKQ nội tiếp nên suy ra được \(\widehat{QBK}=\widehat{ABK}=\widehat{ AMK}=\widehat{QPK}\)nên tứ giác KPMN nội tiếp. Do đó KPMN là hình thang cân. Do đó \(\widehat{PMH}=\widehat{PHM}=\widehat{KNM}\)nên KN//HP.

Do vậy tứ giác HPKN là hình bình hành. Từ đó ta có điều phải chứng minh.