Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Dễ cm ON là đường trung bình của \(\Delta CAK \Rightarrow ON//AK\)
Mà \(ON//BH\) ( cùng vuông góc với AC) \(\Rightarrow AK//BH\) (1)
CM tương tự ta có: OM là đường trung bình của\(\Delta CKB\Rightarrow OM//BK\)
Mà \(OM//AH\)(cùng vuông góc với AC) \(\Rightarrow AH//BK\) (2)
Từ (1) và (2) suy ra KAHB là hình bình hành
b,Vì KAHB là hình bình hành ( theo câu a)
\(\Rightarrow AH=BK\)
Mà \(OM=\dfrac{1}{2}BK\) ( do OM là đường trung bình của\(\Delta CBK\))
\(\Rightarrow OM=\dfrac{1}{2}AH\) \(\Rightarrow ĐPCM\)
Chứng minh như vậy khó nên mk làm luôn cả bài ra nha
a, Chứng minh rằng tam giác OMN đồng dạng với tam giác HAB:
OMN^ = HAB^ ( góc có cạnh tương ứng //)
ONM^ = HBA^ ( --------nt -------------)
=> Δ OMN ~ Δ HAB
b, So sánh AH và OM:
MN là đường trung bình của Δ CAB => MN = AB/2 (1)
kết quả câu a) có:
Δ OMN ~ Δ HAB => OM/AH = MN/AB (2)
(1) và (2) => OM/AH = 1/2 => AH = 2.OM.
c, Gọi G là trọng tâm của tam giác ABC.Chứng minh rằng tam giác HAG đồng dạng tam giác OMG
ta có:
HAG^ = OMG^ (3) ( so le trong)
OM/AH = 1/2 ( kết quả câu b))
GM/AG = 1/2 ( vì G là trọng tâm tam giác ABC)
=> OM/AH = GM/AG (4)
(3) và (4) => Δ HAG ~ Δ OMG ( 2 cạnh tỷ lệ và góc xen giữa = nhau)
d, Chứng minh 3 điểm H,G,O thẳng hàng và GH=2GO
Δ HAG ~ Δ OMG => OGM^ = HGA^ => H,G,O thẳng hàng.
và OG/GH = OM/AH = 1/2 => GH = 2.GO