Chọn n là số tự nhiên . Chúng tỏ :
a) (n+10) (n+15) là bội của 2
b) n (n+10) (n+2) là bội của 2 và 3
c) n (n+1) (2n+1) là bội của 2 và 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta thấy n;n+1;n+2 là 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 2 ; có 1 số chia hết cho 3
=> n.(n+1).(n+1) chia hết cho 2 và 3 hay n.(n+1).(n+2) là bội của 2 và 3
b, Ta thấy n;n+1 là 2 số tự nhiên liên tiếp nên có 1 số chia hết cho 2 => n.(n+1).(2n+1) chia hết cho 2 hay n.(n+1).(2n+1)là bội của 2
+ Nếu n = 3k ( k thuộc N ) thì n.(n+1).(2n+1) chia hết cho 3(1)
+ Nếu n = 3k+1(k thuộc N) thì 2n+1 = 6n+3 = 3.(n+1) chia hết cho 3 => n.(n+1).(2n+1) chia hết cho 3 (2)
+ Nếu n = 3k+2 (k thuộc N ) thì n+1 = 3n+3 = 3.(n+1) chia hết cho 3 => n(.n+1).(2n+1) chia hết cho 3(3)
Từ (1);(2) và (3) => n.(n+1).(2n+1) chia hết cho 3 hay n.(n+1).(2n+1) là bội của 3
=> ĐPCM
- Để A chia hết có 2 :
TH1 : n chẵn => A chia hết cho 2
TH2 n lẻ => n + 1 chẵn => A chia hết cho 2 .
- Để A chia hết cho 3 :
TH1 : n = 3k => A chia hết cho 3
TH2 : n = 3k + 1 => 2n + 1 = 6k + 3 chia hết cho 3 => A chia hết cho 3 .
TH3 : n = 3k + 2 => n + 1 = 3k + 3 chia hết cho 3 => A chia hết cho 3 .
=> A chia hết cho 2 và 3
=> A là bội của 2 và 3 .
ta có : A = n(n+1)(2n+1)
nếu n chia hết cho 2
suy ra n=2k
suy ra Achia hết cho 2
suy ra A là bội của 2
nếu n chia cho 2 dư 1
suy ra n=2k+1
suy ra n+1=2k+2chia hết cho 2
suy ra A chia hết cho 2
suy ra A là bội của 2
suy ra với n là stn thì A là bội của 2(1)
Lại có: nếu n chia hết cho 3
suy ra A chia hết cho 3
suy ra A là bội của 3
nếu n chia cho 3 dư 1
suy ra n=3k+1
suy ra 2n+1=6k+3chia hết cho 3
suy ra A chia hết cho 3
suy ra A là bội của 3
Nếu n chia cho 3 dư 2
suy ra n=3k+2
suy ra n+1=3k+3chia hết cho 3
suy ra A chia hết cho 3 suy ra A là bội của 3
suy ra n là stn thì A là bội của 3(2)
từ (1)và (2)suy ra nếu n là stn thì A là bội của 3 và 2
- \(\left(n+10\right)\left(n+15\right)\)
+ Nếu \(n\)chẵn thì \(n+10\)chẵn nên \(\left(n+10\right)\left(n+15\right)\)là bội của \(2\).
+ Nếu \(n\)lẻ thì \(n+15\)chẵn nên \(\left(n+10\right)\left(n+15\right)\)là bội của \(2\).
- \(n\left(n+1\right)\left(n+2\right)\)là tích của \(3\)số tự nhiên liên tiếp nên có ít nhất \(1\)thừa số chia hết cho \(2\), \(1\)thừa số chia hết cho \(3\). Nên ta có đpcm.
- \(n\left(n+1\right)\left(2n+1\right)=n\left(n+1\right)\left[\left(n+2\right)+\left(n-1\right)\right]=\left(n-1\right)n\left(n+1\right)+n\left(n+1\right)\left(n+2\right)\)
có \(\left(n-1\right)n\left(n+1\right)\)và \(n\left(n+1\right)\left(n+2\right)\)đều là tích của \(3\)số tự nhiên liên tiếp nên có ít nhất \(1\)thừa số chia hết cho \(2\), \(1\)thừa số chia hết cho \(3\). Nên ta có đpcm.
a, (n+10).(n+5) là bội của 2
Giải :
Ta có : 10 là số chẵn, 5 là số lẻ.
--> n+10 và n+5 sẽ có 2 trường hợp:
* n+10 là chẳn, n+5 là lẻ
* n+10 là lẻ, n+5 là chẵn
Mà chẵn x lẻ = chẵn và chẵn chia hết cho 2
---> (n+10).(n+5) là bội của 2
b, tương tự
Vì 2n+1 là số chính phương lẻ nên
2n+1≡1(mod8)⇒2n⋮8⇒n⋮42n+1≡1(mod8)⇒2n⋮8⇒n⋮4
Do đó n+1 cũng là số lẻ, suy ra
n+1≡1(mod8)⇒n⋮8n+1≡1(mod8)⇒n⋮8
Lại có
(n+1)+(2n+1)=3n+2(n+1)+(2n+1)=3n+2
Ta thấy
3n+2≡2(mod3)3n+2≡2(mod3)
Suy ra
(n+1)+(2n+1)≡2(mod3)(n+1)+(2n+1)≡2(mod3)
Mà n+1 và 2n+1 là các số chính phương lẻ nên
n+1≡2n+1≡1(mod3)n+1≡2n+1≡1(mod3)
Do đó
n⋮3n⋮3
Vậy ta có đpcm.
a) 6 là bội của n+1
=> 6 ⋮ n+1
=> n+1 thuộc Ư(6)={1;2;3;-1;-2;-3}
Lập bảng tìm n :
n+1 | 1 | 2 | 3 | -1 | -2 | -3 |
n | 0 | 1 | 2 | -2 | -3 | -4 |
Vậy n thuộc { 0;1;2;-2;-3;-4}
b) Xét n+1 là bội của 6
=> n+1 thuộc { 0; 6; 12; 18; ... }
=> n thuộc { -1; 5; 11; 17; .... }
Nhớ xét các t/h âm nữa nhé! Nhưng vì bội vô hạn nên chỉ cần thêm 1 - 2 số âm thôi nha ^^
c) 2n+3 là bội của n+1
=> 2n+3 ⋮ n+1
=> 2(n+1) + 1 ⋮ n+1
ta có 2(n+1) ⋮ n+1
=> 1 ⋮ n+1
=> n+1 thuộc Ư(1) = { 1; -1 }
=> n thuộc { 0; -2 }
d) tương tự
a) 6 là bội của n+1 => n+1 là ước của 6
Ư(6)= 1;2;3;6. Ta có bảng: ( bạn tự vẽ bảng nhé )
n+1 1 2 3 6
n 0 1 2 5
Vậy n = 0; 1; 2; 5
b) B(6)= 0;6;12;18;24;30;...... Ta có bảng:
n+1 0 12 18 24 30
n 0 11 17 23 29
Vậy n = 0;5;11;17;23;29;.....
c) ta có bảng:
n 0 1 2 3 4 5 6 7
2n+3 3 5 7 9 11 13 15 17
n+1 1 2 3 4 5 6 7 8
Vậy n = 0.
2n + 3 là bội của n - 2
2n +3 chia hết cho n-2
2n - 4 + 7 chia hết cho n - 2
n - 2 thuộc Ư(7)
=> n = 3;1; - 5 ; 9
mà n là số tự nhiên => n = 1;3;9
a) Nếu n là số chẵn thì n+10⋮2
⇒(n+10).(n+15)⋮2
Nếu n là số lẻ thì n+15⋮2
⇒(n+10).(n+15)⋮2