K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2017

ta có \(\frac{1+2+3+...+2013.a}{a}\)< \(\frac{1+2+3+...+2013.b}{b}\)nên ta có

(1+2+3+...+2013.a ) : a < (1+2+3+...+2013.b) :b

vì 2013 x a chia hết cho aneen loại và 2013.b chia hết cho b nên loại . Vậy

(1+2+3+.... ) :a <(1+2+3+...):b

mà 1+2+3+... = 1+2+3+...

nên chắc chắn rằng 1+2+3+... :a vì a lớn hơn b nên 1+2+3 +...:a <1+2+3+... :

Vậy a >b

5 tháng 3 2016

\(\frac{1+2+3+...+2013a}{a}=\frac{1+2+3+...+2013a-1}{a}+\frac{2013a}{a}=\frac{1+2+3+...+2013a-1}{a}+2013\)

\(\frac{1+2+3+...+2013b}{b}=\frac{1+2+3+...+2013b-1}{b}+\frac{2013b}{b}=\frac{1+2+3+...+2013b-1}{b}+2013\)

suy ra \(\frac{1+2+3+...+2013a-1}{a}<\frac{1+2+3+...+2013b-1}{b}\)

\(\Rightarrow\frac{2013a-1}{a}<\frac{2013b-1}{b}\Rightarrow\frac{a\left(2013-\frac{1}{a}\right)}{a}<\frac{b\left(2013-\frac{1}{b}\right)}{b}\)

\(\Rightarrow2013-\frac{1}{a}<2013-\frac{1}{b}\Rightarrow\frac{1}{a}<\frac{1}{b}\Rightarrow b>a\)

5 tháng 3 2016

nhầm , b<a

30 tháng 10 2019

                                                       Bài giải

a, \(\left| |3x-\frac{7}{3} | -2\right|=7\)

\(\Rightarrow\orbr{\begin{cases}|3x-\frac{7}{3}|-2=-7\\|3x-\frac{7}{3}|-2=7\end{cases}}\)                 \(\Rightarrow\orbr{\begin{cases}|3x-\frac{7}{3}|=-5\text{ ( loại) }\\|3x-\frac{7}{3}|=9\end{cases}}\)         \(\Rightarrow\text{ }\left|3x-\frac{7}{3}\right|=9\)        \(\Rightarrow\orbr{\begin{cases}3x-\frac{7}{3}=-9\\3x-\frac{7}{3}=9\end{cases}}\)                             \(\Rightarrow\orbr{\begin{cases}3x=\frac{-20}{3}\\3x=\frac{34}{3}\end{cases}}\)                             \(\Rightarrow\orbr{\begin{cases}x=-\frac{20}{9}\\x=\frac{34}{9}\end{cases}}\)

                 \(\Rightarrow\text{ }x\in\left\{-\frac{20}{9}\text{ ; }\frac{34}{9}\right\}\)

3 tháng 9 2016

Ta có : \(\frac{a}{a+\sqrt{2013a+bc}}=\frac{a}{a+\sqrt{a^2+ab+ac+bc}}=\frac{a}{a+\sqrt{\left(a+b\right)\left(a+c\right)}}\)

Theo bất đẳng thức Bunhiacopxki : \(\sqrt{\left(a+b\right)\left(c+a\right)}\ge\sqrt{\left(\sqrt{ac}+\sqrt{ab}\right)^2}=\sqrt{ab}+\sqrt{ac}\)

\(\Rightarrow\frac{a}{a+\sqrt{\left(a+b\right)\left(a+c\right)}}\le\frac{a}{a+\sqrt{ab}+\sqrt{ac}}=\frac{\sqrt{a}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)

hay \(\frac{a}{a+\sqrt{2013a+bc}}\le\frac{\sqrt{a}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)

Tương tự : \(\frac{b}{b+\sqrt{2013b+ac}}\le\frac{\sqrt{b}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)

\(\frac{c}{c+\sqrt{2013c+ab}}\le\frac{\sqrt{c}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)

Cộng các bất đẳng thức trên theo vế được \(\frac{a}{a+\sqrt{2013a+bc}}+\frac{b}{b+\sqrt{2013b+ac}}+\frac{c}{c+\sqrt{2013c+ab}}\le1\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\\a+b+c=2013\\a,b,c>0\end{cases}}\) \(\Leftrightarrow a=b=c=671\)

16 tháng 11 2017

Co: \(\frac{1+2+3+...+a}{a}\)=\(\frac{1}{a}+\frac{2}{a}+\frac{3}{a}+...+\frac{a}{a}\)

        \(\frac{1+2+3+...+b}{b}\)=\(a>b=>\frac{1}{a}< \frac{1}{b},\frac{2}{a}< \frac{2}{b},...\)

=>\(\frac{1+2+3+...+a}{a}< \frac{1+2+3+...+b}{b}\)

16 tháng 11 2017

k cho mk nha

23 tháng 3 2019

Ta có công thức: \(1+2+3+4+...+n=\frac{n\cdot\left(n+1\right)}{2}\)

Ta có:\(\frac{1+2+3+...+a}{a}< \frac{1+2+3+...+b}{b}\)

\(\Leftrightarrow\frac{\frac{a\left(a+1\right)}{2}}{a}< \frac{\frac{b\left(b+1\right)}{2}}{b}\)

\(\Leftrightarrow\frac{a\left(a+1\right)}{2a}< \frac{b\left(b+1\right)}{2b}\)

\(\Leftrightarrow\frac{a+1}{2}< \frac{b+1}{2}\)

\(\Leftrightarrow a+1< b+1\)

\(\Leftrightarrow a< b\)

12 tháng 2 2016

câu 1: -799999

câu 2: cần 13245 chữ số

câu 3: 2014 chữ số

câu 4: -617

câu 6: 2014

câu 7: 16

câu 10: 9

Còn mấy câu nữa mình không biết. bạn tích đúng cho mình nha