S=1+2+5+14+....+(3n-1+1)/2
khi n là 1 số nguyên dương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với n=1
\(S=2^3+2^2+1=13\) không chia hết cho 7
Bạn kiểm tra lại đề xem
Với n=1
S=2^3+2^2+1=13 không chia hết cho 7
Bạn kiểm tra lại đề xem
nhìn cái cuối là biết quy luật đó bạn :))
\(S=\frac{3^{1-1}+1}{2}+\frac{3^{2-1}+1}{2}+\frac{3^{3-1}+1}{2}+...+\frac{3^{n-1}+1}{2}\)
\(S=\frac{\left(3^0+3^1+....+3^{n-1}\right)+\left(1+1+1+...+1\right)}{2}\left(\text{ có n c/s 1}\right)\)
\(S=\frac{\frac{\left(3^n-1\right)}{2}+n}{2}=3^n-1+\frac{n}{2}\)
chỗ 30+31+...+3n-1 bn tự tính :))
Gọi ước chung lớn nhất của n - 5 và 3n - 14 là d, ta có
3 ( n - 5) - ( 3n - 14)= -1 chia hết cho d
=> d = -1 hoặc 1, do đó n - 5 và 3n - 14 là nguyên tố cùng nhau
vậy n - 5/3n - 14 là phân số tối giản
mình biết nội quy rồi nên đưng đăng nội quy
ai chơi bang bang 2 kết bạn với mình
mình có nick có 54k vàng đang góp mua pika
ai kết bạn mình cho
Vì n nguyên dương nên 3n+1 nguyên dương và lớn hơn hoặc = 4 ; 3n-1 nguyên dương và lớn hơn hoặc = 2
=> 2^3n+1 tận cùng là 2 và lớn hơn hoặc = 16; 2^3n-1 tận cùng là 2 và lớn hơn hoặc = 4
=> 2^3n+1 + 2^3n-1 + 1 tận cùng là 5 và 2^3n+1 + 2^3n-1 + 1 lớn hơn hoặc = 21
=> A tận cùng là 5 và A lớn hơn hoặc = 21
=> A chia hết cho 5 và A>5
=> A có ít nhất 3 ước là 1; 5 và A
=> A là hợp số
Vậy bài toán được chứng minh
Do n nguyên dương, đặt \(n=m+1\) với m là số tự nhiên
\(\Rightarrow A=2^{3\left(m+1\right)-1}+2^{3\left(m+1\right)+1}+1=2^{3m+2}+2^{3\left(m+1\right)+1}+1\)
\(=4.8^m+2.8^{m+1}+1\)
Do \(8\equiv1\left(mod7\right)\Rightarrow\left\{{}\begin{matrix}8^m\equiv1\left(mod7\right)\\8^{m+1}\equiv1\left(mod7\right)\end{matrix}\right.\)
\(\Rightarrow4.8^m+2.8^{m+1}+1\equiv4+2+1\left(mod7\right)\)
\(\Rightarrow4.8^m+2.8^{m+1}+1⋮7\)
Ta có: n2+3n+5=n2+n+2n+5=n.(n+1)+2n+2+3=n.(n+1)+2.(n+1)+3=(n+2).(n+1)+2
Vì (n+2).(n+1) chia hết cho n+1.
=>(n+2).(n+1)+2 : n+1(dư 2)
Vậy n2+3n+5:n+1(dư 2)