K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABM và ΔACN có 

AB=AC
\(\widehat{ABM}=\widehat{ACN}\)

BM=CN

Do đó: ΔABM=ΔACN

b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC
\(\widehat{HAB}=\widehat{KAC}\)

Do đó: ΔAHB=ΔAKC

Suy ra: AH=AK

c: Ta có: \(\widehat{OBC}=\widehat{HBM}\)

\(\widehat{OCB}=\widehat{KCN}\)

mà \(\widehat{HBM}=\widehat{KCN}\)

nên \(\widehat{OBC}=\widehat{OCB}\)

hay ΔOBC cân tại O

22 tháng 2 2022

đừng nói như vậy mà khocroi

Xét ΔABD và ΔACE có

AB=AC

\(\widehat{ABD}=\widehat{ACE}\)

BD=CE
Do đó: ΔABD=ΔACE

Suy ra: AD=AE

Xét ΔDMB vuông tại M và ΔENC vuông tại N có

DB=EC

\(\widehat{D}=\widehat{E}\)

Do đó: ΔDMB=ΔENC

Suy ra: \(\widehat{DBM}=\widehat{ECN}\)

=>\(\widehat{OBC}=\widehat{OCB}\)

=>ΔOBC cân tại O

=>OB=OC

hay O nằm trên đường trung trực của BC(1)

Ta có:AB=AC

nên A nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra AO là đường trung trực của BC

=>AO⊥BC

=>AO⊥DE

Ta có: ΔADE cân tại A

mà AO là đường cao

nên AO là phân giác

Xét ΔBAM và ΔCAN có 

AB=AC

\(\widehat{ABM}=\widehat{ACN}\)

BM=CN

DO dó: ΔBAM=ΔCAN

Suy ra: AM=AN

hay ΔAMN cân tại A

3 tháng 6 2019

Theo câu b ta có ΔBHM = ΔCKN ⇒ HM = KN (hai cạnh tương ứng)

Mà AM = AN ⇒ AM –MH = AK – KN hay AH = AK.

4 tháng 3 2021
answer-reply-imageBn tham khảo nhé!  
4 tháng 3 2021

Mn giúp mik với;-;

16 tháng 2 2017

Giải bài 70 trang 141 Toán 7 Tập 1 | Giải bài tập Toán 7Giải bài 70 trang 141 Toán 7 Tập 1 | Giải bài tập Toán 7

ΔABC cân tại A suy ra Giải bài 70 trang 141 Toán 7 Tập 1 | Giải bài tập Toán 7

Ta lại có :

Giải bài 70 trang 141 Toán 7 Tập 1 | Giải bài tập Toán 7

- ΔABM và ΔACN có

      AB = AC (Do ΔABC cân tại A).

      Giải bài 70 trang 141 Toán 7 Tập 1 | Giải bài tập Toán 7

      BM = CN(gt)

⇒ ΔABM = ΔACN (c.g.c)

⇒ AM = AN (hai cạnh tương ứng) ⇒ ΔAMN cân tại A.

27 tháng 2 2015

Từ đỉnh A kẻ đường cao AH (H thuộc BC) (1)

Ta có : tam giác ABC cân tại A (gt) (2)

Từ(1) và(2)=> HB=HC(=1/2 BC) (3)

Lại có: BM=CN (gt) (4)

M nằm trên tia đối của tia BC, N nằm trên tia đối của tia CB => M,B,C.N thẳng hàng (5)

Từ (3)và (4)=>HB+BM=HC+CN (6)

Từ  (5) và (6)=>AH vừa là đường cao, vừa là đường trung tuyến trong tam giác AMN

=> Tam giác AMN cân tại A (đpcm)

 

a) Tam giác ABC cân nên hai góc đáy bằng nhau : Góc ACB = Góc ABC 
Ta lại có : Góc ABM = 180° - Góc ABC , Góc ACN = 180° - Góc ACB 
Vậy Góc ABM = Góc ACN 
Xét hai tam giác ABM và CAN , ta có : 
AB = AC (gt) 
Góc ABM = Góc ACN (cmt) 
BM = CN (gt) 
=> Tam giác ABM = tam giác CAN => AM = AN 
Vậy tam giác AMN là tam giác cân tại A 
b) Vì tam giác AMN cân => Góc AMB = Góc ANC 
Xét tam giác MHB và tam giác CKN 
Ta có : Góc MHB = Góc CKN ( Góc vuông ) 
Góc AMB = Góc ANC (cmt) 
MB = CN (cmt) 
=> tam giác MHB = tam giác NKC (g-c-g) 
=> BH = CK 
c) làm tương tự câu b 
d) Tam giác ABM = Tam giác CKN => Góc HBM = Góc KCN 
Góc CBO = Góc HBM và Góc KCN = Góc BCO ( đối đỉnh ) 
=> OBC là tam giác cân tại O 
e) Khi BAC = 60° => Tam giác ABC đều 
ta suy ra BM = AB => Tam giác ABM cân đỉnh B . Ta có Góc AMB = \(\frac{1}{2}\) ABC = \(\frac{1}{2}\) . 60 = 30° 
Làm tương tự cho góc kia thì ANM = 30° 
Góc  = 180 - 30° - 30° = 120° 
Góc KCN = Góc BCO =60° 
bn tham khảo!

bn thiếu đề bài : 

Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm M, trên tia đối của tia CB lấy điểm N sao cho BM = CN

a) Chứng minh rằng tam giác AMN là tam giác cân

b) Kẻ BH vuông góc với AM ( H thuộc AM ). Kẻ CK vuông góc với AN ( K thuộc AN ). Chứng minh rằng BH = CK

c) Chứng minh rằng AH = AK

d) Gọi O là giao điểm của BH và CK. Tam giác OBC là tam giác gì? Vì sao?

e) Khi góc BAC = 60 độ và BM = CN = BC, hãy tính số đo các góc của tam giác AMN và xác định dạng của tam giác OBC.

a: Ta có: \(\widehat{ABM}+\widehat{ABC}=180^0\)(hai góc kề bù)

\(\widehat{ACB}+\widehat{ACN}=180^0\)(hai góc kề bù)

mà \(\widehat{ABC}=\widehat{ACB}\)(ΔABC cân tại A)

nên \(\widehat{ABM}=\widehat{ACN}\)

b: 

Xét ΔABM và ΔACN có

AB=AC

\(\widehat{ABM}=\widehat{ACN}\)

BM=CN

Do đó: ΔABM=ΔACN

=>AM=AN

=>ΔAMN cân tại A

c: Ta có: ΔABC cân tại A

=>\(\widehat{ABC}\) nhọn

=>\(\widehat{ABM}=180^0-\widehat{ABC}>90^0\)

Xét ΔABM có \(\widehat{ABM}>90^0\)

mà AM là cạnh đối diện của góc ABM

nên AM là cạnh lớn nhất trong ΔABM

=>AM>AB

mà AB=AC

nên AM>AC