K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 1 2017

Câu hỏi của Việt Trần - Toán lớp 7 | Học trực tuyến nhé

19 tháng 7 2018

1/ 

Từ \(a-b=2\left(a+b\right)\Rightarrow a-b=2a+2b\Rightarrow a-2a=2b+b\Rightarrow-a=3b\Rightarrow a=-3b\)

\(\Rightarrow\frac{a}{b}=\frac{-3b}{b}=-3\)

\(\Rightarrow\hept{\begin{cases}a-b=-3\\2\left(a+b\right)=-3\end{cases}\Rightarrow\hept{\begin{cases}a-b=-3\\a+b=-\frac{3}{2}\end{cases}}}\)

\(\Rightarrow a-b+a+b=-3-\frac{3}{2}\Rightarrow2a=\frac{-9}{2}\Rightarrow a=\frac{-9}{4}\)

Có: \(a-b=-3\Rightarrow b=a+3\Rightarrow b=\frac{-9}{4}+3=\frac{3}{4}\)

Vậy a=-9/4,b=3/4

2/ Đặt \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\Rightarrow x=ak,y=bk,z=ck\)

Ta có: \(\frac{bx-ay}{a}=\frac{bak-abk}{a}=0\left(1\right)\)

\(\frac{cx-az}{y}=\frac{cak-ack}{y}=0\left(2\right)\)

\(\frac{ay-bx}{c}=\frac{abk-bak}{c}=0\left(3\right)\)

Từ (1),(2),(3) => đpcm

17 tháng 12 2018

\(\frac{xy}{ay+bx}=\frac{yz}{bz+cy}=\frac{zx}{cx+az}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\)

\(\Leftrightarrow\frac{x}{a}+\frac{y}{b}=\frac{y}{b}+\frac{z}{c}=\frac{z}{c}+\frac{x}{a}\)

\(\hept{\begin{cases}\frac{x}{a}+\frac{y}{b}=\frac{y}{b}+\frac{z}{c}\Rightarrow\frac{x}{a}=\frac{z}{c}\\\frac{z}{c}+\frac{x}{a}=\frac{y}{b}+\frac{z}{c}\Rightarrow\frac{x}{a}=\frac{y}{b}\\\frac{x}{a}+\frac{y}{b}=\frac{z}{c}+\frac{x}{a}\Rightarrow\frac{y}{b}=\frac{z}{c}\end{cases}}\Rightarrow\frac{x}{a}=\frac{z}{c}=\frac{y}{b}.\text{đăt}k=\frac{x}{a}=\frac{z}{c}=\frac{y}{b}\Rightarrow x=ak,z=ck,y=bk\)

ta có: \(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{k^2.\left(x^2+y^2+z^2\right)}{\left(x^2+y^2+z^2\right)}=k^2\Rightarrow k^2=2k\Rightarrow k^2-2k=0\Rightarrow k.\left(k-2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}k=0\\k=2\end{cases}\text{mà a,b,c và x,y,z khác 0. }\Rightarrow k=2\Rightarrow x=2a,y=2b,z=2c}\)

p/s: bài nì khó chơi vc =.=" sai sót bỏ qua ^^'