Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\Rightarrow\frac{a\left(bz-cy\right)}{a^2}=\frac{b\left(cx-az\right)}{b^2}=\frac{c\left(ay-bx\right)}{c^2}\)
\(\Rightarrow\frac{abz-acy}{a^2}=\frac{bcz-abz}{b^2}=\frac{acy-bcz}{c^2}\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{abz-acy}{a^2}=\frac{bcx-abz}{b^2}=\frac{acy-bcx}{c^2}=\frac{abz-acy+bcx-abz+acy-bcz}{a^2+b^2+c^2}=\frac{0}{a^2+b^2+c^2}=0\)
=> abz - acy = 0 => abz = acy => bz = cy (1)
bcx - abz = 0 => bcx = abz => cx = az (2)
acy - bcx = 0 => acy = bcx => ay = bx
Chuyển đổi vế 1 và 2 ta có :
\(bz=cy\Rightarrow\frac{b}{y}=\frac{c}{z}\left(a\right)\)
\(cx=az\Rightarrow\frac{c}{z}=\frac{a}{x}\left(b\right)\)
Từ a và b
=> \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\) (ĐPCM)
\(\frac{cy-bz}{x}=\frac{az-cx}{y}=\frac{bx-ay}{z}\)
=> \(\frac{cyx-bzx}{x^2}=\frac{azy-cxy}{y^2}=\frac{bxz-ayz}{z^2}=\frac{cyx-bzx+azy-cxy+bzx-ayz}{x^2+y^2+z^2}\)
\(=\frac{0}{x^2+y^2+z^2}=0\)
Khi đó \(\hept{\begin{cases}cyx-bzx=0\\azy-cxy=0\\bxz-ayz=0\end{cases}}\Leftrightarrow\hept{\begin{cases}cy=bz\\az=cx\\bx=ay\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{b}{y}=\frac{c}{z}\\\frac{c}{z}=\frac{a}{x}\\\frac{z}{x}=\frac{b}{y}\end{cases}}\Leftrightarrow\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)
\(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)
\(\Rightarrow\frac{abz-acy}{a^2}=\frac{bcx-abz}{b^2}=\frac{acy-bcx}{c^2}\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{abz-acy}{a^2}=\frac{bcx-abz}{b^2}=\frac{acy-bcx}{c^2}=\frac{abz-acy+bcx-abz+acy-bcx}{a^2+b^2+c^2}=\frac{0}{a^2+b^2+c^2}=0\)
\(\Rightarrow\hept{\begin{cases}bz-cy=0\\cx-az=0\\ay-bx=0\end{cases}}\Rightarrow\hept{\begin{cases}bz=cy\\cx=az\\ay=bx\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\frac{y}{b}=\frac{z}{c}\\\frac{x}{a}=\frac{z}{c}\\\frac{y}{b}=\frac{x}{a}\end{cases}}\Rightarrow\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
* C1 :(bz - cy)/a = (abz - acy)/a2
(cx - az)/b = (bcx - abz)/b2
(ay - bx)/c = (acy - bcx)/c2
Mà (bz - cy)/a = (cx - az)/b = (ay - bx)/c
=>(abz - acy)/a2 = (bcx - abz)/b2 = (acy - bcx)/c2 = (abz - acy + bcx - abz + acy - bcx)/a2 + b2 + c2 = 0
=>(bz - cy)/a = (cx - az)/b = (ay - bx)/c = 0
=>bz - cy = cx - az = ay - bx = 0
*Xét bz - cy = 0
=>bz = cy
=>z/c = y/b
Chứng minh tương tự = >x/a = y/b ; x/a = z/c
=> x/a = y/b = z/c
*C2 :
(bz - cy)/a = (abz - acy)/ax
(cx - az)/by = (bcx - abz)/by
(ay - bx)/cz = (acy - bcx)/cz
Làm tương tự như C1
Chắc phải thêm điều kiện a, b, c khác 0 và a + b + c khác 0.
\(\frac{bx-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}=\frac{\left(bx-cy\right)+\left(cx-az\right)+\left(ay-bx\right)}{a+b+c}=\frac{0}{a+b+c}=0\)
=> bx - cy = cx - az = ay - bx = 0
=> cx = az ; ay = bx
=> \(\frac{x}{a}=\frac{z}{c};\frac{x}{a}=\frac{y}{b}\)
(bx-cy)+(cx-az)+(ay-bx)
=bx-cy+cx-az+ay-bx
=cx-cy-az+ay thi =0 sao duoc
#)Tuy k giải được nhưng có bài cho tham khảo nek :
Câu hỏi của Hann Hann - Toán lớp 7 - Học toán với OnlineMath
Link : https://olm.vn/hoi-dap/detail/7941323649.html
Mk sẽ gửi về chat cho
Giải:
Đặt : \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\) => \(\hept{\begin{cases}x=ak\\y=bk\\z=ck\end{cases}}\)
Khi đó, ta có:
\(\frac{b.ck-c.bk}{a}=\frac{0}{a}=0\) (1)
\(\frac{c.ak-a.ck}{b}=\frac{0}{b}=0\) (2)
\(\frac{a.bk-b.ak}{c}=\frac{0}{c}=0\) (3)
Từ (1); (2); (3) suy ra \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)
giả sử
\(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)
ta có:\(\text{}\text{}\text{}\text{}\text{}\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}=\frac{bxz-cyx}{ax}=\frac{cxy-ayz}{by}=\frac{ayz-bxz}{cz}=\frac{bxz-cyx+cxy-ayz+ayz-bxz}{ax+by+cz}=0\)
\(\frac{bz-cy}{a}=0\Rightarrow bz=cy\Rightarrow\frac{z}{c}=\frac{y}{b}\left(1\right)\)
\(\frac{cx-az}{b}=0\Rightarrow cx=az\Rightarrow\frac{z}{c}=\frac{x}{a}\left(2\right)\)
\(\frac{ay-bx}{c}=0\Rightarrow ay=bx\Rightarrow\frac{x}{a}=\frac{y}{b}\left(3\right)\)
từ (1),(2),(3) => \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
=> điều giả sử đúng => đpcm
1/
Từ \(a-b=2\left(a+b\right)\Rightarrow a-b=2a+2b\Rightarrow a-2a=2b+b\Rightarrow-a=3b\Rightarrow a=-3b\)
\(\Rightarrow\frac{a}{b}=\frac{-3b}{b}=-3\)
\(\Rightarrow\hept{\begin{cases}a-b=-3\\2\left(a+b\right)=-3\end{cases}\Rightarrow\hept{\begin{cases}a-b=-3\\a+b=-\frac{3}{2}\end{cases}}}\)
\(\Rightarrow a-b+a+b=-3-\frac{3}{2}\Rightarrow2a=\frac{-9}{2}\Rightarrow a=\frac{-9}{4}\)
Có: \(a-b=-3\Rightarrow b=a+3\Rightarrow b=\frac{-9}{4}+3=\frac{3}{4}\)
Vậy a=-9/4,b=3/4
2/ Đặt \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\Rightarrow x=ak,y=bk,z=ck\)
Ta có: \(\frac{bx-ay}{a}=\frac{bak-abk}{a}=0\left(1\right)\)
\(\frac{cx-az}{y}=\frac{cak-ack}{y}=0\left(2\right)\)
\(\frac{ay-bx}{c}=\frac{abk-bak}{c}=0\left(3\right)\)
Từ (1),(2),(3) => đpcm