Chứng minh rằng ko tồn tại cac so nguyen a,b,c thoa man he thuc:a(b-c)(b+c-a)^2+c(a-b)(a+b-c)^2=1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho tam giác ABC vuông tại A, kẻ AH vuông góc với BC (H thuộc BC), gọi M là trung điểm của BC. Trên tia đối của MA lấy D sao cho DM=MA, trên tia đối cảu CD lấy điểm I sao cho CI=CA. qua I kẻ đường thẳng song song với AC cắt đường thẳng AH tại E
a) CMR: AE=BC
b) tam giác ABC cần điều kiện nào để HE lớn nhất. vì sao??
giúp mk với
a) Thay \(a+c=2b\) vào \(2bd=c\left(b+d\right)\)
\(\Rightarrow\)\(2bd=c\left(b+d\right)\)\(=\left(a+c\right)d=c\left(b+d\right)\)
\(\Rightarrow ad+cd=cb+cd\Rightarrow ad=cb\)
\(\Rightarrow\dfrac{a}{b}=\dfrac{c}{d}\) với \(\forall b,d\ne0\) (đpcm)
b) Tìm tất cả các số nguyên tố (x;y) thỏa mãn đẳng thức: x^2 - 2y^2 = 1? | Yahoo Hỏi & Đáp
b) Giải:
Ta có: \(x^2-2y^2=1\Leftrightarrow x^2-1=2y^2\) \((*)\)
Ta xét hai trường hợp:
Trường hợp 1: Nếu \(x\) chia hết cho \(3.\)
Mà \(x\) là số nguyên tố \(\Leftrightarrow x=3\) thay vào \((*)\) ta có:
\(3^2-1=2y^2\Leftrightarrow2y^2=8\Leftrightarrow y=2\)
Trường hợp 2: Nếu \(x\) không chia hết cho \(3.\)
\(\Leftrightarrow\left(x^2-1\right)⋮3\Leftrightarrow2y^2⋮3.\) Mà \(\left(2;3\right)=1\)
\(\Leftrightarrow y⋮3\) khi đó \(x^2=19\) \(\Leftrightarrow x=\sqrt{19}\notin P\)
Vậy \(\left(x,y\right)=\left(3;2\right)\)