K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2020

can gap nha

10 tháng 11 2019

Ta có: \(a^3+b^3=2\left(c^3-8d^3\right)\)

\(\Leftrightarrow a^3+b^3=2c^3-16d^3\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=3c^3-15d^3=3\left(c^3-5d^3\right)\)

\(VP⋮3\Rightarrow a^3+b^3+c^3+d^3⋮3\)(1)

Ta có: \(a^3-a+b^3-b+c^3-c+d^3-d\)

\(=\left(a-1\right)a\left(a+1\right)+\left(b-1\right)b\left(b+1\right)\)

\(+\left(c-1\right)c\left(c+1\right)+\left(d-1\right)d\left(d+1\right)\)

Vì tích 3 số tự nhiên liên tiếp chia hết cho 3 nên \(\left(a-1\right)a\left(a+1\right)+\left(b-1\right)b\left(b+1\right)\)

\(+\left(c-1\right)c\left(c+1\right)+\left(d-1\right)d\left(d+1\right)\)chia hết cho 3 (2)

Từ (1) và (2) suy ra \(a+b+c+d⋮3\left(đpcm\right)\)

28 tháng 5 2016

Ta có : \(\frac{a^2}{b+c}+\frac{b+c}{4}\ge2\sqrt{\frac{a^2}{b+c}.\frac{b+c}{4}}=a\)

Tương tự : \(\frac{b^2}{a+c}+\frac{a+c}{4}\ge b\) ; \(\frac{c^2}{a+b}+\frac{a+b}{4}\ge c\)

\(\Rightarrow\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\left(a+b+c\right)-\frac{2\left(a+b+c\right)}{4}=\frac{a+b+c}{2}=\frac{3}{2}\)

Vậy Min = 3/2 \(\Leftrightarrow a=b=c=1\)

12 tháng 7 2023

Mày nhìn cái chóa j

27 tháng 10 2019

Câu hỏi của CTV - Toán lớp 8 - Học toán với OnlineMath

1 tháng 12 2017

Chỗ giả thiết vế phải có đúng ko vậy

29 tháng 3 2016

bài này chứng minh bài toán phụ, khá là phức tạp, trình bày ra chắc chết quá

bài này mình thấy tren mạng đăng lên đó, có kết quả nhưng ko copy được