Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Rút gọn biểu thức:
\(A=75\left(4^{1993}+4^{1992}+....+4^2+5\right)+25\)
Ta có \(A=75\left(4^{1993}+4^{1992}+....+4+1\right)+25\)
\(\Leftrightarrow A=25\left(4-1\right)\left(4^{1993}+4^{1992}+...+4+1\right)+25\)
Vận dụng hằng đẳng thức
\(a^n-b^n=\left(a-b\right)\left(a^{n-1}+a^{n-2}b+...+b^{n-1}\right)\)
Ta có
\(\left(4-1\right)\left(4^{1993}+4^{1992}+...+4+1\right)=4^{1994}-1\)
\(\Rightarrow A=25\left(4^{1994}-1\right)+25\)
\(\Leftrightarrow A=25\cdot4^{1994}\)
Vậy \(A=25\cdot4^{1994}\)
Ta có \(A=75\left(4^{1993}+4^{1992}+....+4+1\right)+25\)
\(\Leftrightarrow A=25\left(4-1\right)\left(4^{1993}+4^{1992}+...+4+1\right)+25\)
Vận dụng hằng đẳng thức
\(a^n-b^n=\left(a-b\right)\left(a^{n-1}+a^{n-2}b+...+b^{n-1}\right)\)
Ta có
\(\left(4-1\right)\left(4^{1993}+4^{1992}+...+4+1\right)=4^{1994}-1\)
\(\Rightarrow A=25\left(4^{1994}-1\right)+25\)
\(\Leftrightarrow A=25\cdot4^{1994}\)
Vậy \(A=25\cdot4^{1994}\)