- Cho tg ABC, 2 trug tuyến BD và CE cắt nhau tại G. Biết BC=10 cm, BD=9cm, CE=12cm. a)CM góc BGC=90, b) tính SABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ad tính chất 3 đường trung tuyến đồng quy
=> BG=2/3BD
=> BG=8
Và: CG=2/3CE
=> CG=6
AD pytago:
=> BC^2=BG^2+CG^2
(giải thích chỗ này nhá) do: BC^2=8^2+6^2
=> BC^2=100
=> BC =10
b) Cx ad PYTAGO:
=> DE^2=EG^2+GD^2
=> DE^2=4^2+3^2
=> DE^2=25
=> DE=5
hình như thiếu đề bạn à , G ở đâu , bạn ghi lại đề đi , rồi gửi link qua cho mk
Tham khảo:
Gọi I là giao điểm của CE và BD.
Theo t/c của đường trung tuyến, ta có:
CI/CE = 2/3
hay CI/12 = 2/3
<=> CI = 2/3.12
<=> CI = 8 cm
Tương tự, ta có:
BI/BD = 2/3
hay BI/9 = 2/3
<=> BI = 2/3.9
<=> BI = 6 cm
t.g BIC vuông tại I nên:
BC^2 = IC^2 + BI^2
<=> BC^2 = 8^2 + 6^2
<=> BC^2 = 100
<=> BC = 10 cm
Gọi giao điểm của hai đường trung tuyến BD và CE là G thì G là trọng tâm tam giác ABC.
Theo tính chất đường trung tuyến của tam giác ta có BG = \(\dfrac{2}{3}\) BD; CG = \(\dfrac{2}{3}\) CE
Mà BD = 9 cm; CE = 12 cm nên BG = \(\dfrac{2}{3}\) . 9 = 6 cm; CG = \(\dfrac{2}{3}\) . 12 cm = 8 cm.
Xét tam giác BGC vuông tại G.
Ta có: BC2 = BG2 + CG2 (định lý Pytago)
=> BC2 = 62 + 82
=> BC2 = 100
=> BC = \(\sqrt{100}\) = 10 cm
Vậy BC = 10 cm.
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
AB=AC
góc BAD chung
=>ΔADB=ΔAEC
=>BD=CE
b: góc ABD=góc ACE
=>góc HBC=góc HCB
=>ΔHBC cân tại H
c: AB=AC
HB=HC
=>AH là trung trực của BC
a.
Ta có: trung tuyến BD và CE cắt nhau tại G => G là trọng tâm tam giác ABC
=> BG = 2/3BD=2/3.9=6 (cm)
=> CG=2/3CE = 2/3.12= 8 (cm)
Xét tam giác BGC:
BC2=BG2+CG2 (102=62+82)
=> BGC vuông tại G (theo định lí Pitago)
=> Góc BGC = 90 độ.
b.
bn ơi giúp mik câu b thui