K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2021

a,\(=>\angle\left(EDF\right)=180^o-\angle\left(DEF\right)-\angle\left(DFE\right)=80^O\)

b,\(\angle\left(EDM\right)=\angle\left(MDF\right)=\dfrac{\angle\left(EDF\right)}{2}=40^o\)

c,\(\angle\left(DME\right)=\angle\left(DFE\right)+\angle\left(MDF\right)=80^o\)

11 tháng 1 2023

1, Xét \(\Delta MNP\) cân tại \(M\) có

\(\widehat{N}=\widehat{D}=\dfrac{180^o-\widehat{M}}{2}=\dfrac{180^o-70^o}{2}=55^o\)

2, Xét \(\Delta DEF\) cân tại \(D\)

\(\Rightarrow\widehat{E}=\widehat{F}=40^o\) ( hai góc đáy bằng nhau )

Ta có tổng 3 góc trong tam giác

 \(\widehat{D}+\widehat{E}+\widehat{F}=180^o\\ =>\widehat{D}=180^o-40^o-40^o=100^o\)

1: góc N=góc P=(180-70)/2=55 độ

2: góc F=góc E=40 độ

góc D=180-40*2=100 độ

16 tháng 12 2019

a. Ta có: N đối xứng với E qua M (gt)

      => EM = MN 

      => M là trung điểm của EN

Xét tứ giác DEFN, có:

      M là trung điểm của EN (cmt)

      M là trung điểm của DF (gt)

      => DEFN là hình bình hành (dhnb)

\(\text{a. Ta có: N đối xứng với E qua M (gt)}\)

      => EM = MN 

      => M là trung điểm của EN

\(\text{Xét tứ giác DEFN, có:}\)

\(\text{ M là trung điểm của EN (cmt)}\)

\(\text{ M là trung điểm của DF (gt)}\)

      => DEFN là hình bình hành (dhnb)

HQ
Hà Quang Minh
Giáo viên
18 tháng 9 2023

Vì \(\Delta ABC = \Delta DEF\) nên BC = EF ( 2 cạnh tương ứng); \(\widehat A = \widehat {EDF}\) ( 2 góc tương ứng)

Mà BC = 4 cm nên EF = 4 cm

Trong tam giác ABC có: \(\widehat A + \widehat B + \widehat C = 180^\circ \) ( định lí tổng ba góc trong một tam giác)

\(\begin{array}{l} \Rightarrow \widehat A + 40^\circ  + 60^\circ  = 180^\circ \\ \Rightarrow \widehat A = 180^\circ  - 40^\circ  - 60^\circ  = 80^\circ \end{array}\)

Mà \(\widehat A = \widehat {EDF}\) nên \(\widehat {EDF} = 80^\circ \)

18 tháng 4 2022

Câu 1 lỗi font còn câu 2 là 60 độ nhé do x và góc A đều bù góc FIE

18 tháng 4 2022

Bài 9: Cho tam giác DEF có D^ - F^ = 50° và E^ = 80°. Số đo của góc D^ và F^ lần lượt là?

Xét tam giác DEF có

\(\widehat{D}+\widehat{E}+\widehat{F}=180^o\\ \Rightarrow\widehat{D}=180^o-\left(\widehat{E}+\widehat{F}\right)\\ =180^o-120^o=60^o\) 

 \(\widehat{E}=\widehat{F}=60^o\\ \Rightarrow\Delta DEF.cân\)

9 tháng 11 2016

Ta có: tam giác DEF = tam giác HIK

=> DE = HI ; EF = IK ; DF = HK

=> góc D = góc H

góc E = góc I

góc F = góc K

a/ Ta có: góc E = góc I (vì tam giác DEF = HIK)

Mà góc E = 400 => góc I = 400

b/ Chu vi tam giác DEF= chu vi tam giác HIK

= DE + EF + HK = DE+EF+DF=2+5+6=13 (cm)

Vậy chu vi tam giác DEF = chu vi tam giác HIK = 13 cm

a: Xét ΔDHE vuông tại H và ΔDHF vuông tại H có

DE=DF

DH chung

=>ΔDHE=ΔDHF

b: ΔDHE=ΔDHF

=>góc EDH=góc FDH=40/2=20 độ

c: góc FKD=góc FHD=90 độ

=>FHKD nội tiếp

=>góc KDH=góc KFH

27 tháng 10 2019

30 A C B D F E F' E'

Từ D Hạ đường cao DF' , DE' lần lượt lên AB; AC

=> Có: \(DE'\le DE;DF'\le DF\) với mọi vị trí D, E, F

=> \(S_{DEF}\le S_{DE'F'}\)

"=" xảy ra <=> E trùng E'; F trùng F'

AE'F'D là hình chữ nhật ( tự chứng minh )

Đặt: AF' = x; AE'=y

Có: \(AB=a;BC=2a=2.AB\)=> \(\Delta\)ABC vuông tại A có: \(\widehat{ACB}=30^o\)=> \(AC=a\sqrt{3}\)

=> \(BF'=a-x\)\(CE'=a\sqrt{3}-y\)

Dễ thấy:  \(\Delta BF'D\approx\Delta DE'C\approx\Delta BAC\)

=> \(BD=2.\left(a-x\right)\)\(DC=\frac{\left(a\sqrt{3}-y\right)}{\sqrt{3}}.2\)

mà BD +DC =BC =2a

=> \(2\left(a-x\right)+\left(a-\frac{y}{\sqrt{3}}\right).2=2a\)

=> \(x+\frac{y}{\sqrt{3}}=a\)

Có diện tích DEF nhỏ nhất <=> D'E'F' nhỏ nhất <=> E'F' nhỏ nhất

=> \(E'F'^2=x^2+y^2=\frac{3}{4}\left(1^2+\frac{1}{3}\right)\left(x^2+y^2\right)\ge\frac{3}{4}\left(x+\frac{y}{\sqrt{3}}\right)^2=\frac{3}{4}.a^2=\frac{3}{4}a^2\)

=> \(E'F'\ge\frac{a\sqrt{3}}{2}\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x=y\sqrt{3}\\x+\frac{y}{\sqrt{3}}=a\end{cases}}\)<=> \(\hept{\begin{cases}x=\frac{3}{4}a\\y=\frac{\sqrt{3}}{4}a\end{cases}}\)

=> Vậy vị trí : E cách A khoảng \(\frac{\sqrt{3}}{4}a\); F cách A khoảng \(\frac{3}{4}a\); D cách B khoảng \(2\left(a-\frac{3}{4}a\right)=\frac{a}{2}\)

=> \(S_{\Delta DEF}=\frac{1}{2}DE.DF=\frac{1}{2}AE.AF=\frac{1}{2}x.y=\frac{1}{2}.\frac{3a}{4}.\frac{\sqrt{3}a}{4}=\frac{3\sqrt{3}}{32}a^2\)

29 tháng 10 2019

kết bạn