Chứng minh rằng với mọi số nguyên tố a>5 thì (a^{2016}-1)sẽ chia hết cho 240
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dot eo chui noi tu lam di
nho k nha!
thang dot cung biet lam bai nay
Ta có:
p4 - 1
= (p2 - 1).(p2 + 1)
- Do p nguyên tố, p > 5 => p không chia hết cho 3 => p2 không chia hết cho 3
=> p2 chia 3 dư 1
=> p2 - 1 chia hết cho 3 => p4 - 1 chia hết cho 3 (1)
- Do p nguyên tố, p > 5 => p lẻ => p2 lẻ
=> p2 chia 8 dư 1
=> p2 - 1 chia hết cho 8 => p4 - 1 chia hết cho 8 (2)
- Do p nguyên tố, p > 5 => p không chia hết cho 5 => p2 không chia hết cho 5
=> p2 chia 5 dư 1 hoặc 4
+ Nếu p2 chia 5 dư 1 => p2 - 1 chia hết cho 5 => p4 - 1 chia hết cho 5
+ Nếu p2 chia 5 dư 4 => p2 + 1 chia hết cho 5 => p4 - 1 chia hết cho 5
=> p4 - 1 luôn chia hết cho 5 (3)
Từ (1); (2); (3), do 3;5;8 nguyên tố cùng nhau từng đôi một => p4 - 1 chia hết cho 120
Mà p2 lẻ => p2 + 1 chẵn => p2 + 1 chia hết cho 2
=> p4 - 1 chia hết cho 240
Ủng hộ mk nha ^_-
Đề sai. Bạn cho $a=3,b=5$ thì $a^3b-ab^2=60$ không chia hết cho $240$
Chứng minh rằng: Với mọi số tự nhiên n thì:
a)n(n+5) chia hết cho 2
b)4n+1 và 5n+1 nguyên tố cùng nhau
a)
vì nEN nên n có dạng 2k hoặc 2k+1
với n=2k
=>n(n+5)=2k(2k+5) chia hết cho2 vì 2k chẵn
với n=2k+1
=>n(n+5)=2k+1(2k+1+5)=2k+1(2k+6) chia hết cho 2 vì 2k+6 chẵn
b)
gọi UCLN(4n+1;5n+1)=d
ta có :
4n+1 chia hết cho d =>5(4n+1) chia hết cho d =>20n+5 chia hết cho d
5n+1 chia hết cho d =>4(5n+1) chia hết cho d =>20n+4 chia hết cho d
=>(20n+5)-(20n+4) chia hết cho d
=>1 chia hết cho d
=>d=1
=>UCLN(..)=1
=>NTCN
=>dpcm
Ta có
n(n+5)=n(n+1+4)=n(n+1)+4n
Vì n và n+1 là 2 số liên tiếp =>n(n+1) chia hết cho 2
4n cũng chia hết cho 2
=>n(n+5) chia hết cho 2
tick rui tui lam câu b ccho
1.
$4-n\vdots n+1$
$\Rightarrow 5-(n+1)\vdots n+1$
$\Rightarrow 5\vdots n+1$
$\Rightarrow n+1\in \left\{1; 5\right\}$
$\Rightarrow n\in \left\{0; 4\right\}$
2.
Nếu $n$ chẵn $\Rightarrow n+6$ chẵn.
$\Rightarrow (n+3)(n+6)$ chẵn $\Rightarrow (n+3)(n+6)\vdots 2$
Nếu $n$ lẻ $\Rightarrow n+3$ chẵn.
$\Rightarrow (n+3)(n+6)$ chẵn $\Rightarrow (n+3)(n+6)\vdots 2$