Chia 129 cho một số ta được số dư là 10. Chia 61 cho số đố ta cũng được thương là 10. Tìm số chia
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(129-10=119⋮b\)
\(61-10=51⋮b\)
=> b là ước chung của 119 và 51 => b=17
b/
Số dư lớn nhất cho 1 phép chia kém số chia 1 đơn vị
Số dư trong phép chia này là
14-1=13
\(\Rightarrow a=14.5+13=83\)
a) gọi số chia cần tìm là b ( b > 10)
Gọi q1 là thương của phép chia 129 cho b
Vì 129 chia cho b dư 10 nên ta có:129 = b.q1 + 10 ⇒ b.q1 =119 = 119.1 =17.7
Gọi q2 là thương của phép chia 61 chia cho cho b
Do chia 61 cho b dư 10 nên ta có 61 = b.q2 +10⇒ b.q2 = 51 = 1.51 = 17.3
Vì b < 10 và q1 ≠ q2 nên ta dược b = 17
Vậy số chia thỏa mãn bài toán là 17.
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
Vì số đó chia 60 được số dư là 31 => Số đó có dạng 60K+31
Xét tổng trên ta có: 60K+31=30.2K+30+1
=> 60K+31= 30.(2K+1)+1
Vi 30.(2K+1) chia hết cho 2 ( do 30 chia hết cho 2) => 3.(2K+1) có dạng tổng quát chung là 2K
=> 60K+31=2K+1
Vậy nếu đem số đó chia cho 2 thì được số dư là 1
Gọi số bị chia là và số chia là (a, b thuộc N*)
Theo đề bài ta có:
=2 +x
và =2 +(x-100)
Trừ hai vế cho nhau ta có:
- =2 +x-2 -x+100
=>100a=200b+100
=>a=2b+1
Từ điều kiện ban đầu và a là số lẻ (đẳng thức trên)=>a thuộc {3;5;7;9}
Xét từng trường hợp ta được a={3;5;7;9}
Vậy ta có 4 cặp số ( ; ) thỏa mãn đề bài:
(333;111);(555;222);(777;333);(999;444)
Gọi số cần tìm là A (100\(\le\)A\(\le\)9990)
thương và số dư là r (r \(\in\)N*)
Theo bài ra ta có:
A=75r+r
A=76r
A là 1 số chia hết cho 76 có 3 chữ số lớn nhất
Ta có: 999:76=13 (dư11)
A= 999-11=988
Vậy A = 988