Cho tam giác ABC vuông tại A, AB = AC = 6cm. Lấy điểm M thuộc cạnh AB, điểm N thuộc cạnh AC sao cho AM = AN. Đường thẳng qua M vuông góc với BN cắt đường thẳng AC tại D. Khi đó, CD = ..... cm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC vuông tại A và ΔDMC vuông tại D có
góc C chung
=>ΔABC đồng dạng với ΔDMC
=>AB/DM=BC/MC=AC/DC
=>6/DM=10/MC=8/3
=>DM=6:8/3=2,25cm và MC=10:8/3=10*3/8=30/8=3,75cm
b: Xét ΔABC vuông tại A và ΔMBE vuông tại M có
góc B chung
=>ΔABC đồng dạng với ΔMBE
=>BA/BM=BC/BE
=>BA*BE=BM*BC
Xét hai tam giác KAD và BAE có:
\(\widehat{KAD}=\widehat{BAE}\left(=90^o\right)\)
AD = AE (gt)
\(\widehat{D_1}=\widehat{E_1}\) (cùng phụ với góc K)
Vậy: \(\Delta KAD=\Delta BAE\left(g-c-g\right)\)
Suy ra: AK = AB (hai cạnh tương ứng)
Ta lại có AB = AC
Do đó: AK = AC.
Xet tứ giác ADIE ta có: góc D3+ E =180
> D3=180- E.
> D4=180-D1
[ Góc D3 =D4 (đối đỉnh)]
>> góc D1= E.
xét tam giác ABE và tam giác KAD. Có góc D1=E, cạnh AD=AE,
---> Tam giác ABE = tam giác KAD.
-->> AB =AK
> AB=AC=KA
AK=AC.
>>
CN=12CM
CD=12cm đó bạn