K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2017

1/ \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{1}{10}\)

\(\Rightarrow2017\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)=2017\cdot\frac{1}{10}\)

\(\Rightarrow\frac{2017}{a+b}+\frac{2017}{b+c}+\frac{2017}{c+a}=201,7\)

\(\Rightarrow\frac{a+b+c}{a+b}+\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}=201,7\) (vì a + b + c = 2017)

\(\Rightarrow\left(\frac{c}{a+b}+1\right)+\left(\frac{a}{b+c}+1\right)+\left(\frac{b}{a+c}+1\right)=201,7\)

\(\Rightarrow M=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}+3=201,7\)

\(\Rightarrow M=198,7\)

2/ 

a, 3n+2 - 2n+2 + 3n + 2n 

= 3n.32 + 3n - 2n.22 + 2n 

= 3n.10 - 2n.5 

= 3n.10 - 2n-1.10

= 10(3n - 2n-1 ) ⋮ 10 

20 tháng 10 2017

\(C=\left(\frac{1}{2}-1\right).\left(\frac{1}{3}-1\right).\left(\frac{1}{n}-1\right)\)

\(C=-1.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{n}\right)\)

\(C=-1.\left(\frac{5}{6}+\frac{1}{n}\right)\)

\(C=-1.\frac{5}{6}+-1.\frac{1}{n}\)

\(C=-\frac{5}{6}+-\frac{1}{n}\)

20 tháng 10 2017

\(C=\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{n}-1\right)\)

\(\Rightarrow C=\frac{-1}{2}.\frac{-2}{3}.\frac{-\left(n-1\right)}{n}\)

\(\Rightarrow C=\frac{-1.-1.-\left(n-1\right)}{3.n}\)

\(\Rightarrow C=\frac{-\left(n-1\right)}{3.n}\)

AH
Akai Haruma
Giáo viên
21 tháng 1 2020

$n$ tiến đến đâu vậy bạn?

AH
Akai Haruma
Giáo viên
21 tháng 1 2020

Câu 2:

\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{n(n+1)}=\frac{2-1}{1.2}+\frac{3-2}{2.3}+...+\frac{(n+1)-n}{n(n+1)}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...\frac{1}{n}-\frac{1}{n+1}\)

\(=1-\frac{1}{n+1}\)

\(\Rightarrow \lim_{n\to \infty}(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{n(n+1)})=\lim_{n\to \infty}(1-\frac{1}{n+1})=1-\lim_{n\to \infty}\frac{1}{n+1}=1-0=1\)

27 tháng 9 2016

không hỉu

29 tháng 9 2016

chỉnh lại rồi nhé

4 tháng 12 2017

mk năm nay học lớp 8 mà mới chỉ học công thức thôi chứ chưa học (hoặc đã học mà quên mất) nhưng chứng minh cái này mk mới chỉ học công thức thôi chứ chứng minh bài toán tổng quánthì chịu

10 tháng 4 2018

a) \(10^{n+1}-6.10^n\)

\(=10^n.10-6.19^n\)

\(=10^n.\left(10-6\right)\)

\(=10^n.4\)

b) \(2^{n+3}+2^{n+2}-2^{n+1}+2^n\)

\(=2^n.2^3+2^n.2^2-2^n.2+2^n.1\)

\(=2^n.\left(2^3+2^2-2+1\right)\)

\(=2^n.11\)

c) \(90.10^k-10^{k+2}+10^{k+1}\)

\(=90.10^k-10^k.10^2+10^k.10\)

\(=10^k.\left(90-10^2+10\right)\)

\(=0\)

d) \(2,5.5^{n-3}.10+5^n-6.5^{n-1}\)

\(=\dfrac{2,5.5^n.10}{5^3}+5^n-\dfrac{6.5^n}{5}\)

\(=\dfrac{5^n}{5}+5^n-\dfrac{6.5^n}{5}\)

\(=\dfrac{5^n+5^{n+1}-6.5^n}{5}=\dfrac{5^n+5^n.5-6.5^n}{5}=\dfrac{5^n\left(1+5-6\right)}{5}=\dfrac{0}{5}=0\)