1) Thực hiện phép tính
a) \(\frac{\frac{5}{131}+\frac{5}{141}-\frac{5}{191}-\frac{5}{4011}}{\frac{7}{131}+\frac{7}{141}+\frac{7}{-191}-\frac{7}{4011}}\)
2) Tìm x , biết
a) \(\frac{x}{7}\)+ \(\left(-\frac{3}{7}\right)^2\)= \(\frac{2}{7}:\frac{4}{3}\)
b) ( x-1 ) \(^{x+6}\) = ( x-1 ) \(^{x+4}\)
Bài 1:
\(\frac{\frac{5}{131}+\frac{5}{141}-\frac{5}{191}-\frac{5}{4011}}{\frac{7}{131}+\frac{7}{141}+\frac{7}{-191}-\frac{7}{4011}}=\frac{5\left(\frac{1}{131}+\frac{1}{141}-\frac{1}{191}-\frac{1}{4011}\right)}{7\left(\frac{1}{131}+\frac{1}{141}-\frac{1}{191}-\frac{1}{4011}\right)}=\frac{5}{7}\)
Bài 2:
a) \(\frac{x}{7}+\left(\frac{-3}{7}\right)^2=\frac{2}{7}:\frac{4}{3}\)
\(\Rightarrow\frac{x}{7}+\frac{9}{49}=\frac{3}{14}\)
\(\Rightarrow\frac{x}{7}=\frac{3}{98}\)
\(\Rightarrow98x=21\)
\(\Rightarrow x=\frac{3}{14}\)
Vậy \(x=\frac{3}{14}\)
b) \(\left(x-1\right)^{x+6}=\left(x-1\right)^{x+4}\)
\(\Rightarrow\left(x-1\right)^{x+6}-\left(x-1\right)^{x+4}=0\)
\(\Rightarrow\left(x-1\right)^{x+4}.\left[\left(x-1\right)^2-1\right]=0\)
\(\Rightarrow\left(x-1\right)^{x+1}=0\) hoặc \(\left(x-1\right)^2-1=0\)
+) \(\left(x-1\right)^{x+1}=0\Rightarrow x-1=0\Rightarrow x=1\)
+) \(\left(x-1\right)^2-1=0\)
\(\Rightarrow\left(x-1\right)^2=1\)
\(\Rightarrow\left(x-1\right)=\pm1\)
+ \(x-1=1\Rightarrow x=2\)
+ \(x-1=-1\Rightarrow x=0\)
Vậy \(x\in\left\{0;2;1\right\}\)
1)
\(\frac{\frac{5}{131}+\frac{5}{141}-\frac{5}{191}-\frac{5}{4011}}{\frac{7}{131}+\frac{7}{141}+\frac{7}{-191}-\frac{7}{4011}}\)
\(=\frac{5\left(\frac{1}{131}+\frac{1}{141}-\frac{1}{191}-\frac{1}{4011}\right)}{7\left(\frac{1}{131}+\frac{1}{141}-\frac{1}{191}-\frac{1}{4011}\right)}\)
\(=\frac{5}{7}\)
2) \(\frac{x}{7}+\left(-\frac{3}{7}\right)^2=\frac{2}{7}:\frac{4}{3}\)
\(=\frac{x}{7}+\frac{9}{49}=\frac{3}{14}\)
\(=\frac{x}{7}=\frac{3}{14}-\frac{9}{49}=\frac{3}{98}\)
\(\Rightarrow98x=21\)
\(\Rightarrow x=\frac{3}{14}\)