Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1
\(=-\frac{21}{60}=-\frac{7}{20}\)
\(b,\left(2-\frac{1}{3}\right)^2+|-\frac{5}{6}|+\frac{-7}{12}-\frac{25}{9}\)
\(=\frac{25}{9}+\frac{5}{6}-\frac{7}{12}-\frac{25}{9}\)
\(=\left(\frac{25}{9}-\frac{25}{9}\right)+\left(\frac{5}{6}-\frac{7}{12}\right)\)
\(=0+\frac{1}{4}=\frac{1}{4}\)
Bài 2
\(a,x+\frac{2}{5}=-\frac{3}{10}\)
\(x=-\frac{3}{10}-\frac{2}{5}\)
\(x=-\frac{3}{10}-\frac{4}{10}\)
\(x=-\frac{7}{10}\)
\(b,|\frac{2}{3}+x|=\frac{5}{7}\)
\(\Rightarrow\orbr{\begin{cases}\frac{2}{3}+x=\frac{5}{7}\\\frac{2}{3}+x=-\frac{5}{7}\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{5}{7}-\frac{2}{3}\\x=-\frac{5}{7}-\frac{2}{3}\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{1}{21}\\x=-\frac{29}{21}\end{cases}}}\)
== chắc trog quá trình lm lỡ xóa đó
\(a,-\frac{3}{4}.\frac{7}{15}\)
\(=-\frac{21}{60}=-\frac{7}{20}\)
với lại bài trên mk tính nhẩm ko bấm máy sai == sửa giúp
\(\left(\frac{1}{4}-x\right)\left(x+\frac{2}{5}\right)=0\)
Ta xét 2 trường hợp
\(\begin{cases}\frac{1}{4}-x=0\\x+\frac{2}{5}=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{1}{4}\\x=-\frac{2}{5}\end{cases}}\)
tớ mới làm bài 1 thôi bài 2 3 tớ ko có thời gian
Câu 1:
a)\(\frac{3}{4}-0,25-\left[\frac{7}{3}+\left(-\frac{9}{2}\right)\right]-\frac{5}{6}\)
\(=\frac{3}{4}-\frac{1}{4}-\frac{14}{6}+\frac{27}{6}-\frac{5}{6}\)
\(=\frac{1}{2}-\frac{4}{3}\)
\(=-\frac{5}{6}\)
b)\(7+\left(\frac{7}{12}-\frac{1}{2}+3\right)-\left(\frac{1}{12}+5\right)\)
\(=7+\frac{1}{12}+3-\frac{1}{12}-5\)
\(=5\)
Câu 2:
\(\frac{3}{4}-\frac{5}{6}\le\frac{x}{12}< 1-\left(\frac{2}{3}-\frac{1}{4}\right)\)
\(-\frac{1}{12}\le\frac{x}{12}< 1-\frac{5}{12}\)
\(-\frac{1}{12}\le\frac{x}{12}< \frac{7}{12}\)
Vậy -1\(\le\)x<7
\(a,\left(\frac{1}{7}x-\frac{2}{7}\right)\left(-\frac{1}{5}x+\frac{3}{5}\right)\left(\frac{1}{3}x+\frac{4}{3}\right)=0\)
TH1 : \(\frac{1}{7}x-\frac{2}{7}=0\Rightarrow\frac{x-2}{7}=0\Rightarrow x-2=0\Leftrightarrow x=2\)
TH2 : \(-\frac{1}{5}x+\frac{3}{5}=0\Rightarrow\frac{-x+3}{5}=0\Rightarrow-x+3=0\Leftrightarrow x=3\)
TH3 : \(\frac{1}{3}x+\frac{4}{3}=0\Rightarrow\frac{x+4}{3}=0\Rightarrow x+4=0\Leftrightarrow x=-4\)
\(\Rightarrow x\in\left\{2;3;-4\right\}\)
\(b,\frac{1}{6}x+\frac{1}{10}x-\frac{4}{15}x+1=0\)
\(\Rightarrow\frac{5}{30}x+\frac{3}{30}x-\frac{8}{30}x+1=0\)
\(\Rightarrow\frac{5x+3x-8x}{30}+1=0\)
\(\Rightarrow1=0\)( vô lý )\(\Rightarrow x\in\varnothing\)
1a) \(\left|\frac{3}{2}x+\frac{1}{2}\right|=\left|4x-1\right|\)
=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}=4x-1\\\frac{3}{2}x+\frac{1}{2}=1-4x\end{cases}}\)
=> \(\orbr{\begin{cases}-\frac{5}{2}x=-\frac{3}{2}\\\frac{11}{2}x=\frac{1}{2}\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{5}{3}\\x=\frac{1}{11}\end{cases}}\)
b) \(\left|\frac{5}{4}x-\frac{7}{2}\right|-\left|\frac{5}{8}x+\frac{3}{5}\right|=0\)
=>\(\left|\frac{5}{4}x-\frac{7}{2}\right|=\left|\frac{5}{8}x+\frac{3}{5}\right|\)
=> \(\orbr{\begin{cases}\frac{5}{4}x-\frac{7}{2}=\frac{5}{8}x+\frac{3}{5}\\\frac{5}{4}x-\frac{7}{2}=-\frac{5}{8}x-\frac{3}{5}\end{cases}}\)
=> \(\orbr{\begin{cases}\frac{5}{8}x=\frac{41}{10}\\\frac{15}{8}x=\frac{29}{10}\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{164}{25}\\x=\frac{116}{75}\end{cases}}\)
c) TT
a, \(\left|\frac{3}{2}x+\frac{1}{2}\right|=\left|4x-1\right|\)
=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}=4x-1\\-\frac{3}{2}x-\frac{1}{2}=4x-1\end{cases}}\)
=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}-4x=-1\\-\frac{3}{2}x-\frac{1}{2}-4x=-1\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{3}{5}\\x=\frac{1}{11}\end{cases}}\)
\(b,\left|\frac{5}{4}x-\frac{7}{2}\right|-\left|\frac{5}{8}x+\frac{3}{5}\right|=0\)
=> \(\left|\frac{5}{4}x-\frac{7}{2}\right|-0=\left|\frac{5}{8}x+\frac{3}{5}\right|\)
=> \(\frac{\left|5x-14\right|}{4}=\frac{\left|25x+24\right|}{40}\)
=> \(\frac{10(\left|5x-14\right|)}{40}=\frac{\left|25x+24\right|}{40}\)
=> \(\left|50x-140\right|=\left|25x+24\right|\)
=> \(\orbr{\begin{cases}50x-140=25x+24\\-50x+140=25x+24\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{164}{25}\\x=\frac{116}{75}\end{cases}}\)
c, \(\left|\frac{7}{5}x+\frac{2}{3}\right|=\left|\frac{4}{3}x-\frac{1}{4}\right|\)
=> \(\orbr{\begin{cases}\frac{7}{5}x+\frac{2}{3}=\frac{4}{3}x-\frac{1}{4}\\-\frac{7}{5}x-\frac{2}{3}=\frac{4}{3}x-\frac{1}{4}\end{cases}}\)
=> \(\orbr{\begin{cases}x=-\frac{55}{4}\\x=-\frac{25}{164}\end{cases}}\)
Bài 2 : a. |2x - 5| = x + 1
TH1 : 2x - 5 = x + 1
=> 2x - 5 - x = 1
=> 2x - x - 5 = 1
=> 2x - x = 6
=> x = 6
TH2 : -2x + 5 = x + 1
=> -2x + 5 - x = 1
=> -2x - x + 5 = 1
=> -3x = -4
=> x = 4/3
Ba bài còn lại tương tự
Bài 1:
\(\frac{\frac{5}{131}+\frac{5}{141}-\frac{5}{191}-\frac{5}{4011}}{\frac{7}{131}+\frac{7}{141}+\frac{7}{-191}-\frac{7}{4011}}=\frac{5\left(\frac{1}{131}+\frac{1}{141}-\frac{1}{191}-\frac{1}{4011}\right)}{7\left(\frac{1}{131}+\frac{1}{141}-\frac{1}{191}-\frac{1}{4011}\right)}=\frac{5}{7}\)
Bài 2:
a) \(\frac{x}{7}+\left(\frac{-3}{7}\right)^2=\frac{2}{7}:\frac{4}{3}\)
\(\Rightarrow\frac{x}{7}+\frac{9}{49}=\frac{3}{14}\)
\(\Rightarrow\frac{x}{7}=\frac{3}{98}\)
\(\Rightarrow98x=21\)
\(\Rightarrow x=\frac{3}{14}\)
Vậy \(x=\frac{3}{14}\)
b) \(\left(x-1\right)^{x+6}=\left(x-1\right)^{x+4}\)
\(\Rightarrow\left(x-1\right)^{x+6}-\left(x-1\right)^{x+4}=0\)
\(\Rightarrow\left(x-1\right)^{x+4}.\left[\left(x-1\right)^2-1\right]=0\)
\(\Rightarrow\left(x-1\right)^{x+1}=0\) hoặc \(\left(x-1\right)^2-1=0\)
+) \(\left(x-1\right)^{x+1}=0\Rightarrow x-1=0\Rightarrow x=1\)
+) \(\left(x-1\right)^2-1=0\)
\(\Rightarrow\left(x-1\right)^2=1\)
\(\Rightarrow\left(x-1\right)=\pm1\)
+ \(x-1=1\Rightarrow x=2\)
+ \(x-1=-1\Rightarrow x=0\)
Vậy \(x\in\left\{0;2;1\right\}\)
1)
\(\frac{\frac{5}{131}+\frac{5}{141}-\frac{5}{191}-\frac{5}{4011}}{\frac{7}{131}+\frac{7}{141}+\frac{7}{-191}-\frac{7}{4011}}\)
\(=\frac{5\left(\frac{1}{131}+\frac{1}{141}-\frac{1}{191}-\frac{1}{4011}\right)}{7\left(\frac{1}{131}+\frac{1}{141}-\frac{1}{191}-\frac{1}{4011}\right)}\)
\(=\frac{5}{7}\)
2) \(\frac{x}{7}+\left(-\frac{3}{7}\right)^2=\frac{2}{7}:\frac{4}{3}\)
\(=\frac{x}{7}+\frac{9}{49}=\frac{3}{14}\)
\(=\frac{x}{7}=\frac{3}{14}-\frac{9}{49}=\frac{3}{98}\)
\(\Rightarrow98x=21\)
\(\Rightarrow x=\frac{3}{14}\)