K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔOQM vuông tại Q và ΔOHM vuông tại H có

OM chung

\(\widehat{QOM}=\widehat{HOM}\)

Do đó: ΔOQM=ΔOHM

Suy ra: MQ=MH

c: Ta có: ΔOQM=ΔOHM

nên OQ=OH

mà MQ=MH

nên OM là đường trung trực của HQ

hay OM\(\perp\)HQ

10 tháng 12 2016

Kí hiệu tam giác là t/g

a) Xét t/g QOM vuông tại Q và t/g HOM vuông tại H có:

OM là cạnh chung

QOM = HOM ( vì OM là p/g của HOQ)

Do đó, t/g QOM = t/g HOM ( cạnh huyền và góc nhọn kề)

=> MQ = MH (2 cạnh tương ứng) (đpcm)

b) t/g QOM = t/g HOM (câu a)

=> QMO = HMO (2 góc tương ứng)

Xét t/g QMG và t/g HMG có:

MG là cạnh chung

QMG = HMG (cmt)

MQ = HM (câu a)

Do đó, t/g QMG = t/g HMG (c.g.c)

=> QG = HG (2 cạnh tương ứng) (đpcm)

c) t/g QMG = t/g HMG (câu b)

=> QGM = HGM (2 góc tương ứng)

Mà QGM + HGM = 180o

Nên QGM = HGM = 90o

=> QH _|_ OM (đpcm)

11 tháng 12 2016

thankhihi

23 tháng 12 2020

Sửa đề: Chứng minh OM⊥HQ

 

GT

\(\widehat{xOy}< 90^0\)

Ot là tia phân giác của \(\widehat{xOy}\)

M∈Ot

MH⊥Oy tại H

MQ⊥Ox tại Q

QH\(\cap\)Ot={G}

KL

a) MQ=MH

b) GQ=GH

c) QH⊥OM

a) Xét ΔOHM vuông tại H và ΔOQM vuông tại Q có 

OM chung

\(\widehat{HOM}=\widehat{QOM}\)(Ot là tia phân giác của \(\widehat{xOy}\), H∈Oy, Q∈Ox, M∈Ot)

Do đó: ΔOHM=ΔOQM(cạnh huyền-góc nhọn)

⇒MH=MQ(hai cạnh tương ứng)

b) Ta có: ΔOHM=ΔOQM(cmt)

nên OH=OQ(hai cạnh tương ứng)

Xét ΔOHQ có OH=OQ(cmt)

nên ΔOHQ cân tại O(Định nghĩa tam giác cân)

Ta có: ΔOHQ cân tại O(cmt)

mà OG là đường phân giác của ứng với cạnh đáy HQ

nen OG là đường trung tuyến ứng với cạnh HQ(Định lí tam giác cân)

⇒G là trung điểm của HQ

hay GH=GQ(đpcm)

c) Ta có: OH=OQ(cmt)

nên O nằm trên đường trung trực của HQ(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: GH=GQ(cmt)

nên G nằm trên đường trung trực của HQ(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra OG là đường trung trực của HQ

hay OG⊥HQ(đpcm)

7 tháng 12 2016

Ta có hình vẽ:

x O y t Q M H G

Cho Ot là tia phân giác \(\widehat{xOy}\)

a/ Xét tam giác OQM và tam giác OHM có:

\(\widehat{QOM}\)=\(\widehat{HOM}\) (GT)

OM: cạnh chung

\(\widehat{Q}\)=\(\widehat{H}\) =900 (GT)

Vậy tam giác OQM = tam giác OHM

(theo trường hợp cạnh huyền góc nhọn)

=> MQ = MH (2 cạnh tương ứng)

b/ Xét tam giác OQG và tam giác OHG có:

OG: cạnh chung

\(\widehat{QOM}\)=\(\widehat{HOM}\) (GT)

MQ = MH (câu a)

Vậy tam giác OQG = tam giác OHG (c.g.c)

=> GQ = GH (2 cạnh tương ứng)

c/ Ta có: tam giác OQG = tam giác OHG (đã chứng minh trên)

=> \(\widehat{OGQ}\)=\(\widehat{OGH}\) (2 góc tương ứng)

\(\widehat{OGQ}\)+\(\widehat{OGH}\)=1800 (kề bù)

=> \(\widehat{OGQ}\)=\(\widehat{OGH}\)=900 (1)

Ta lại có: GQ = GH (đã chứng minh ở câu b) (2)

Từ (1),(2) => OG là đường trung trực của QH

hay OM là đường trung trực của QH

(vì G,M đều nằm trên tia phân giác Ot)

a: Xét ΔOHM vuông tại H và ΔOKM vuông tại K có

OM chung

\(\widehat{HOM}=\widehat{KOM}\)

Do đó: ΔOHM=ΔOKM

b: ta có: ΔOHM=ΔOKM

nên MH=MK

hay ΔMHK cân tại M

c: \(\widehat{KMH}=360^0-90^0-90^0-120^0=60^0\)

nênΔMHK đều