1. Giá trị lớn nhất của P=I x+1 I^2015+116
chú thích hai chữ I là trị tuyệt đối đó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta có:
$(x-1)^2\geq 0,\forall x$
$|3-y|\geq 0, \forall y$
$\Rightarrow (x-1)^2+|3-y|\geq 0$
$\Rightarrow (x-1)^2+|3-y|-35\geq -35$
$\Rightarrow P=-[(x-1)^2+|3-y|-35]\leq 35$
Vậy $P_{\max}=35$.
Giá trị này đạt tại $(x-1)^2=|3-y|=0$
$\Leftrightarrow x=1; y=3$
Các bạn làm nhanh nhé vì mình đang cần rất gấp, cảm ơn nhiều!!!
ta có
|x-1,5|>0 với mọi x
|2,5-x|> 0 với mọi x
=> |x-1,5|+|2,5-x|>0
mà theo đề bài ta có
|x-1,5|+|2,5-x|=0
=>\(\hept{\begin{cases}x-1,5=0\\2,5-x=0\end{cases}\left(=\right)\hept{\begin{cases}x=1,5\\x=2,5\end{cases}}}\)
=> x ko tồn tại
Ta có : \(\left|x-2001\right|\ge0\forall x\in R\)
\(\left|x-1\right|\ge0\forall x\in R\)
Nên : \(\left|x-2001\right|+\left|x-1\right|\ge0\forall x\in R\)
=> GTNN của biểu thức là : 0
Mà x ko thể có 2 giá trị
Nên GTNN của biểu thức A là : 2001 - 1 = 2000 khi x \(\in R\)
Ta có \(\hept{\begin{cases}\left|x-1,5\right|\ge0\forall x\\\left|2x-3\right|\ge0\forall x\end{cases}}\Rightarrow\left|x-1,5\right|+\left|2x-3\right|-7\ge-7\forall x\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-1,5=0\\2x-3=0\end{cases}\Rightarrow\hept{\begin{cases}x=1,5\\x=1,5\end{cases}}\Rightarrow x=1,5}\)
Vậy GTNN của A là - 7 khi x = 1,5
Ta có: |2x-8| \(\ge\)0
=>-|2x-8|\(\le\)0
=>A=-|2x-8|-21\(\le\)-21
Dấu "=" xảy ra khi: 2x-8=0
=>2x=8
=>x=4
Vậy GTLN của A là -21 tại x=4
Ta thấy: \(\left|x+1\right|\ge0\)
\(\Rightarrow\left|x+1\right|^{2015}\ge0\)
\(\Rightarrow\left|x+1\right|^{2015}+116\ge116\)
\(\Rightarrow P\ge116\)
Dấu "=" xảy ra khi \(\left|x+1\right|=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
Vậy \(Min_P=116\) khi \(x=-1\)
giá trị lớn nhất là 116