K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2021

Áp dụng tính chất `|P|>=P,|P|>=-P`

`=>{(|x+5|>=x+5),(|x+1|>=-x-1):}`

`=>|x+5|+|x+1|>=x+5-x-1=4`

Mặt khác:`|x+3|>=0`

`=>|x+1|+|x+3|+|x+5|>=4(đpcm)`

Dấu "=" xảy ra khi `x=-3`

Bạn xem lại đề nhé.

undefined

9 tháng 8 2021

đề đúng đó b

nó có hỏi dấu = xảy ra khi nào

19 tháng 8 2019

Câu a) của bạn là 6 nhân 4 hay \(6,4\) vậy bạn? Nguyễn Thanh Giang

19 tháng 8 2019

bỏ qua r lm thui Vũ Minh Tuấn hiha

NV
8 tháng 3 2020

ĐKXĐ: \(x\ge2\)

\(\Leftrightarrow\sqrt{x-2-2\sqrt{x-2}+1}+\sqrt{x-2-6\sqrt{x-2}+9}=-x^2+4x-2\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-2}-1\right)^2}+\sqrt{\left(\sqrt{x-2}-3\right)^2}=-x^2+4x-2\)

\(\Leftrightarrow\left|\sqrt{x-2}-1\right|+\left|\sqrt{x-2}-3\right|=-x^2+4x-2\)

\(\Leftrightarrow\left|\sqrt{x-2}-1\right|+\left|3-\sqrt{x-2}\right|=2-\left(x-2\right)^2\)

Ta có: \(VP=2-\left(x-2\right)^2\le2\)

\(VT=\left|\sqrt{x-2}-1\right|+\left|3-\sqrt{x-2}\right|\ge\left|\sqrt{x-2}-1+3-\sqrt{x-2}\right|=2\)

\(\Rightarrow VT\ge VP\)

Dấu "=" xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}\sqrt{x-2}-1\ge0\\3-\sqrt{x-2}\ge0\\x-2=0\end{matrix}\right.\) \(\Rightarrow\) Không tồn tại x thỏa mãn

Vậy pt vô nghiệm

11 tháng 3 2020

tks b nha

7 tháng 7 2017

(x-2)(x-3) - (x-7)(x+4) = 5-x

\(\Leftrightarrow\)\(x^2-3x-2x+6-x^2-4x+7x+28=5-x\)

\(\Leftrightarrow\)\(x^2-x^2-3x-2x-4x+7x+x=5-28-6\)

\(\Leftrightarrow\) \(-x=-29\)

\(\Leftrightarrow\)x\(=\)29

7 tháng 7 2017

mình bấm nguyên bài vào mt nó ra là -17/5 bạn ơi >< còn mình tính ra 11/5 ><

30 tháng 9 2018

\(\frac{4x}{1-x^2}=\sqrt{5}\)   ĐKXĐ : x khác 1

\(\Rightarrow4x=\sqrt{5}\left(1-x^2\right)\)

\(\Leftrightarrow4x=\sqrt{5}-x^2\sqrt{5}\)

\(\Leftrightarrow x^2\sqrt{5}-4x-\sqrt{5}=0\)

\(\Leftrightarrow x^2\sqrt{5}-5x+x-\sqrt{5}=0\)

\(\Leftrightarrow x\sqrt{5}\left(x-\sqrt{5}\right)+\left(x-\sqrt{5}\right)=0\)

\(\Leftrightarrow\left(x-\sqrt{5}\right)\left(x\sqrt{5}+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-\sqrt{5}=0\\x\sqrt{5}=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\sqrt{5}\left(tmđk\right)\\x=-\frac{1}{\sqrt{5}}=-\frac{\sqrt{5}}{5}\left(tmđk\right)\end{cases}}}\)

30 tháng 9 2018

\(4x=\sqrt{5}-\sqrt{5}x^2\)

\(\Rightarrow4x+\sqrt{5}x^2=\sqrt{5}\)

\(\Rightarrow x\left(4+\sqrt{5}x\right)=\sqrt{5}\)

\(\Rightarrow x.\sqrt{5}\left(\frac{4}{\sqrt{5}}+x\right)=\sqrt{5}\)

\(\Rightarrow x.\left(\frac{4}{\sqrt{5}}+x\right)=1\)

Với x = 1 \(\Rightarrow\frac{4}{\sqrt{5}}+x=1\Rightarrow x=1-\frac{4}{\sqrt{5}}=\frac{5-4\sqrt{5}}{5}\)

Với x = -1\(\Rightarrow\frac{4}{\sqrt{5}}+x=-1\Rightarrow x=-1-\frac{4}{\sqrt{5}}=-\frac{5+4\sqrt{5}}{5}\)

 ko có x thỏa mãn

7 tháng 9 2016

Theo đầu bài ta có:
\(2x\left(x-\frac{1}{7}\right)=0\)
\(\Rightarrow\hept{\begin{cases}2x=0\\x-\frac{1}{7}\end{cases}=0}\)
\(\Rightarrow\hept{\begin{cases}x=0\\x=\frac{1}{7}\end{cases}}\)

7 tháng 9 2016

\(2x.\left(x-\frac{1}{7}\right)=0\Rightarrow2x=0\)hoặc \(x-\frac{1}{7}=0\)

\(\Rightarrow x=0\)hoặc \(x=\frac{1}{7}\)