K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2016

Gọi d là ƯCLN(3n+4,n+1)

Ta có: \(\begin{cases}3n+4⋮d\\n+1⋮d\end{cases}\) => \(\begin{cases}3n+4⋮d\\3\left(n+1\right)⋮d\end{cases}\) => \(\begin{cases}3n+4⋮d\\3n+3⋮d\end{cases}\)

\(\Rightarrow\left(3n+4\right)-\left(3n+3\right)⋮d\)

\(\Rightarrow3n+4-3n-3⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

=> ƯCLN(3n+4,n+1) = d

=> 3n+4 và n+1 là hai số nguyên tố cùng nhau

24 tháng 12 2016

Gọi ƯCLN(3n + 4 , n + 1 ) = d

→ 3n + 4 chia hết cho d và n + 1 chia hết cho d

3n + 4 chia hết cho d và 3 (n + 1) chia hết cho d

→ 3n + 4 chia hết cho d và 3n + 3 chia hết cho d

→ (3n + 4 ) - (3n + 3) chia hết cho d

→ 1 chia hết cho d

→ d = 1

Vậy hai số 3n+4 và n+1 là hai số nguyên tố cùng nhau.

Giúp mình nhé!

Vậy

14 tháng 11 2017

a)  Gọi ƯCLN(3n+1,6n+1)=d

=> 3n+1 và 6n+1 chia hết chưa d

=> 2(3n+1) và 6n+1 chia hết chưa d

=>6n+2 và 6n+1 chia hết cho d

=>(6n+2)-(6n+1)=1 chia hết cho d

=>d=1

=> 3n+1 và 6n+1 nguyên tố cùng nhau

b, Gọi ƯCLN(2n+3,3n+4)=d

=>2n+3 và 3n+4 chia hết cho d

=>3(2n+3) và 2(3n+4) chia hết cho d

=>6n+9 và 6n+8 chia hết cho d

=>(6n+9)-(6n+8)=1 chia hết cho d

=>d=1

=>2n+3 và 3n+4 nguyên tố cùng nhau

29 tháng 12 2015

a)Vì hai số tự nhiên liên tiếp có UC là 1 nên =>Hai số tự nhiên lien tiếp khác 0 là hai số nguyên tố cùng nhau

b)Vì hai số tự nhiên liên tiếp có UC là 1 nên =>Hai số tự nhiên lien tiếp là hai số nguyên tố cùng nhau

tick nha

17 tháng 4 2017

a, Gọi d ∈ ƯC(n,n+1) => (n+1) – 1 ⋮ d => 1d => d = 1. Vậy n, n+1 là hai số nguyên tố cùng nhau

b, Gọi d ∈ ƯC(2n+1,2n+3) => (2n+3) – (2n+1) ⋮ d => 2d => d ∈ {1;2}. Vì d là số lẻ => d = 1 => dpcm

c, Gọi d ∈ ƯC(2n+1,3n+1) => 3.(2n+1) – 2.(3n+1) ⋮ d => 1d => d = 1 => dpcm

25 tháng 12 2021

Thank you

 

2 tháng 6 2017

31 tháng 10 2024

Đặt (3n+1,2n+1)=₫

=>(2(3n+1(,3(2n+1)=₫

=>(6n+2,6n+3)=₫=>6n+2...₫,6n+3...₫

=>6n+3-6n+2...₫=>1...₫=>₫=1

=>(3n+1,2n+1)=1 nên 3n+1,2n+1laf 2 snt cùng nhau

 

30 tháng 10 2016

bạn chờ mình chút

30 tháng 10 2016

a) Gọi d là UCLN của 3n+4 và 2n+3, suy ra: 
3n+4 chia hết cho d ; 2n+3 chia hết cho d 
+ Ta có : 2.(3n+4) chia hết cho d ( mình kí hiệu là dấu : nha )
=> 6n+8 : d      (1)
Lại có : 3.(2n+3) :d 
=> 6n+9 : d      (2)
+ Từ 1 và 2 => 6n+9 - 6n - 8 :d

=> 1 : d

=> 3n+4 và 2n+3 nguyên tố cùng nhau
Phần b tương tự, kk cho mìnhh nha

16 tháng 9 2021

n+1 và 3n+4 là 2 số nguyên tố cùng nhau khi ƯCLN(n+1;3n+4)=1

Gọi ƯCLN(n+1;3n+4)=d

=> [(n+1)+(3n+4)] chia hết cho d

=> 1 chia hết cho d => d=1

=> ƯCLN(n+1;3n+4)=1

Vậy n+1 và 3n+4 là 2 số nguyên tố cùng nhau