Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho A = 3 + 32 + 33 +...+ 39 + 310
chứng minh rằng A chia hết cho 4
\(A=3+3^2+...+3^9+3^{10}\)
\(=\left(3+3^2\right)+...+\left(3^9+3^{10}\right)\)
\(=3\left(1+3\right)+...+3^9\left(1+3\right)\)
\(=3\cdot4+...+3^9\cdot4\)
\(=4\left(3+...+3^9\right)⋮4\)
Ta có:
\(A=3+3^2+...+3^{10}\)
\(\Rightarrow A=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^9+3^{10}\right)\)
\(\Rightarrow A=3\left(1+3\right)+3^3\left(1+3\right)+...+3^9\left(1+3\right)\)
\(\Rightarrow A=3.4+3^3.4+...+3^9.4\)
\(\Rightarrow A=\left(3+3^3+...+3^9\right).4⋮4\)
\(\Rightarrow A⋮4\)
Vậy \(A⋮4\)
\(A=3+3^2+...+3^9+3^{10}\)
\(=\left(3+3^2\right)+...+\left(3^9+3^{10}\right)\)
\(=3\left(1+3\right)+...+3^9\left(1+3\right)\)
\(=3\cdot4+...+3^9\cdot4\)
\(=4\left(3+...+3^9\right)⋮4\)
Ta có:
\(A=3+3^2+...+3^{10}\)
\(\Rightarrow A=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^9+3^{10}\right)\)
\(\Rightarrow A=3\left(1+3\right)+3^3\left(1+3\right)+...+3^9\left(1+3\right)\)
\(\Rightarrow A=3.4+3^3.4+...+3^9.4\)
\(\Rightarrow A=\left(3+3^3+...+3^9\right).4⋮4\)
\(\Rightarrow A⋮4\)
Vậy \(A⋮4\)