Tìm số nguyên dương biết: x/9<7/x<x/6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x}{9}-\frac{3}{y}=\frac{1}{18}\)
\(\frac{x}{9}-\frac{1}{18}=\frac{3}{y}\)
\(\frac{2x}{18}-\frac{1}{18}=\frac{3}{y}\)
\(\frac{2x-1}{18}=\frac{3}{y}\)
\(\left(2x-1\right)y=18.3=54\)
=> 2x - 1 ; y \(\in\)Ư(54) ={...}
Làm nốt e nhé, chăm chỉ lên !
Lời giải:
$|(x^2+20)(y+1)|=9$
Vì $x,y$ nguyên dương nên $x^2+20, y+1$ nguyên dương
$\Rightarrow (x^2+20)(y+1)= 9$
Mà $x^2+20\geq 21; y+1\geq 2$ với mọi $x,y$ nguyên dương.
$\Rightarrow (x^2+20)(y+1)\geq 21.2=42>9$
Do đó không tồn tại $x,y$ thỏa mãn đề.
Ta có \(\left(\frac{x}{y}\right)^2=\frac{16}{9}=\left(\pm\frac{4}{3}\right)^2\)
\(\frac{x}{y}\)dương nên \(\frac{x}{y}=\frac{4}{3}\Rightarrow x=\frac{4y}{3}\)
Thay \(x=\frac{4y}{3}\)vào \(x^2+y^2=100\)ta được
\(\left(\frac{4y}{3}\right)^2+y^2=100\)
\(\frac{16}{9}.y^2+y^2=100\)
\(y^2.\left(\frac{16}{9}+1\right)=100\)
\(y^2.\frac{25}{9}=100\)
\(y^2=100:\frac{25}{9}=36\)
\(y=6\)( vì y dương )
Ta có :
\(\left(\frac{x}{y}\right)^2=\frac{16}{9}\)\(\Rightarrow\frac{x^2}{y^2}=\frac{16}{9}\Rightarrow\frac{x^2}{16}=\frac{y^2}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{x^2}{16}=\frac{y^2}{9}=\frac{x^2}{4^2}=\frac{y^2}{3^2}=\frac{x^2+y^2}{16+9}=\frac{100}{25}=4=\left(\pm2\right)^2\)
\(\Rightarrow\hept{\begin{cases}x^2=\left(±2\right)^2.4^2\\y^2=\left(\pm2\right)^2.3^2\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2=\left(\pm2.4\right)^2\\y^2=\left(\pm2.3\right)^2\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2=\left(\pm8\right)^2\\y^2=\left(\pm6\right)^2\end{cases}}\Rightarrow\hept{\begin{cases}x=\pm8\\y=\pm6\end{cases}}\)
Mà x và y cùng dấu => ( x , y ) ∈ { ( -8 ; -6 ) ; ( 8 ; 6 ) }
\(\frac{x}{9}< \frac{7}{x}< \frac{x}{6}\)
\(\Leftrightarrow\frac{6x^2}{54x}< \frac{378}{54x}< \frac{9x^2}{54x}\)
\(\Leftrightarrow6x^2< 378< 9x^2\)
\(\Leftrightarrow42< x^2< 63\)
\(\Rightarrow x=7\)