K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2021
Đáp án: x=7 Giải thích các bước giải: x/9
8 tháng 8 2021

\(\frac{x}{9}< \frac{7}{x}< \frac{x}{6}\)

\(\Leftrightarrow\frac{6x^2}{54x}< \frac{378}{54x}< \frac{9x^2}{54x}\)

\(\Leftrightarrow6x^2< 378< 9x^2\)

\(\Leftrightarrow42< x^2< 63\)

\(\Rightarrow x=7\)

29 tháng 6 2017

x . − 3 = − 9 ⇔ x = 3

\(\frac{x}{9}-\frac{3}{y}=\frac{1}{18}\)

\(\frac{x}{9}-\frac{1}{18}=\frac{3}{y}\)

\(\frac{2x}{18}-\frac{1}{18}=\frac{3}{y}\)

\(\frac{2x-1}{18}=\frac{3}{y}\)

\(\left(2x-1\right)y=18.3=54\)

=> 2x - 1 ; y \(\in\)Ư(54) ={...}

Làm nốt e nhé, chăm chỉ lên ! 

5 tháng 5 2020

??????

AH
Akai Haruma
Giáo viên
28 tháng 7

Lời giải:
$|(x^2+20)(y+1)|=9$

Vì $x,y$ nguyên dương nên $x^2+20, y+1$ nguyên dương

$\Rightarrow (x^2+20)(y+1)= 9$

Mà $x^2+20\geq 21; y+1\geq 2$ với mọi $x,y$ nguyên dương.

$\Rightarrow (x^2+20)(y+1)\geq 21.2=42>9$

Do đó không tồn tại $x,y$ thỏa mãn đề.

16 tháng 9 2018

Ta có \(\left(\frac{x}{y}\right)^2=\frac{16}{9}=\left(\pm\frac{4}{3}\right)^2\)

\(\frac{x}{y}\)dương nên \(\frac{x}{y}=\frac{4}{3}\Rightarrow x=\frac{4y}{3}\)

Thay \(x=\frac{4y}{3}\)vào \(x^2+y^2=100\)ta được

\(\left(\frac{4y}{3}\right)^2+y^2=100\)

\(\frac{16}{9}.y^2+y^2=100\)

\(y^2.\left(\frac{16}{9}+1\right)=100\)

\(y^2.\frac{25}{9}=100\)

\(y^2=100:\frac{25}{9}=36\)

\(y=6\)( vì y dương  )

23 tháng 10 2021

Ta có :

\(\left(\frac{x}{y}\right)^2=\frac{16}{9}\)\(\Rightarrow\frac{x^2}{y^2}=\frac{16}{9}\Rightarrow\frac{x^2}{16}=\frac{y^2}{9}\)

Áp dụng tính chất dãy tỉ số bằng nhau , ta có :

\(\frac{x^2}{16}=\frac{y^2}{9}=\frac{x^2}{4^2}=\frac{y^2}{3^2}=\frac{x^2+y^2}{16+9}=\frac{100}{25}=4=\left(\pm2\right)^2\)

\(\Rightarrow\hept{\begin{cases}x^2=\left(±2\right)^2.4^2\\y^2=\left(\pm2\right)^2.3^2\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2=\left(\pm2.4\right)^2\\y^2=\left(\pm2.3\right)^2\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2=\left(\pm8\right)^2\\y^2=\left(\pm6\right)^2\end{cases}}\Rightarrow\hept{\begin{cases}x=\pm8\\y=\pm6\end{cases}}\)

Mà x và y cùng dấu => ( x , y ) ∈ { ( -8 ; -6 ) ; ( 8 ; 6 ) }