K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2016

ếu

17 tháng 12 2016

cc

19 tháng 9 2015

clink vào câu hỏi tương tự                

12 tháng 9 2017

Đặt \(\hept{\begin{cases}x-y=a\\y-z=b\\z-x=c\end{cases}}\)

Vì \(\left(x-y\right)+\left(y-z\right)+\left(z-x\right)=0\) nên \(a+b+c=0\Rightarrow a+b=-c\)

Ta có : \(P=\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{\left(a+b\right)^2}}\)

\(=\sqrt{\frac{\left(a+b\right)^2b^2+a^2\left(a+b\right)^2+a^2b^2}{a^2b^2\left(a+b\right)^2}}=\sqrt{\frac{a^4+b^4+a^2b^2+2ab^3+2ab^3+2a^2b^2}{a^2b^2\left(a+b\right)^2}}\)

\(=\sqrt{\frac{\left(a^2+b^2+ab\right)^2}{a^2b^2\left(a+b\right)^2}}=\frac{a^2+b^2+ab}{ab\left(a+b\right)}\) là một số hữu tỉ (đpcm)

Hình như đề thiếu bạn ak 

30 tháng 8 2019

3/ Ta có:

\(x+y+z=0\)

\(\Rightarrow x^2=\left(y+z\right)^2;y^2=\left(z+x\right)^2;z^2=\left(x+y\right)^2\)

\(a+b+c=0\)

\(\Rightarrow a+b=-c;b+c=-a;c+a=-b\)

\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\)

\(\Leftrightarrow ayz+bxz+cxy=0\)

Ta có:

\(ax^2+by^2+cz^2=a\left(y+z\right)^2+b\left(z+x\right)^2+c\left(x+y\right)^2\)

\(=x^2\left(b+c\right)+y^2\left(c+a\right)+z^2\left(a+b\right)+2\left(ayz+bzx+cxy\right)\)

\(=-ax^2-by^2-cz^2\)

\(\Leftrightarrow2\left(ax^2+by^2+cz^2\right)=0\)

\(\Leftrightarrow ax^2+by^2+cz^2=0\)

30 tháng 8 2019

1/ Đặt \(a-b=x,b-c=y,c-z=z\)

\(\Rightarrow x+y+z=0\)

Ta có:

\(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)

\(=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2\left(x+y+z\right)}{xyz}\)

\(=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2\)

29 tháng 9 2017

Ta có :   \(\left(x+\sqrt{x^2+2017}\right)\left(-x+\sqrt{x^2+2017}\right)=2017\left(1\right)\)

    \(\left(y+\sqrt{y^2+2017}\right)\left(-y+\sqrt{y^2+2017}\right)=2017\left(2\right)\)

        nhân theo vế của ( 1 ) ; ( 2 ) , ta có :

     \(2017\left(-x+\sqrt{x^2+2017}\right)\left(-y+\sqrt{y^2+2017}\right)=2017^2\)

    \(\Rightarrow\left(-x+\sqrt{x^2+2017}\right)\left(-y+\sqrt{y^2+2017}\right)=2017\)

  rồi bạn nhân ra , kết hợp với việc nhân biểu thức ở phần trên xong cộng từng vế , cuối cùng ta đc :

     \(xy+\sqrt{\left(x^2+2017\right)\left(y^2+2017\right)}=2017\)

     \(\Leftrightarrow\sqrt{\left(x^2+2017\right)\left(y^2+2017\right)}=2017-xy\)

     \(\Leftrightarrow x^2y^2+2017\left(x^2+y^2\right)+2017^2=2017^2-2\cdot2017xy+x^2y^2\) 

       \(\Rightarrow x^2+y^2=-2xy\Rightarrow\left(x+y\right)^2=0\Rightarrow x=-y\)

  A = 2017 

 ( phần trên mk lười nên không nhân ra, bạn giúp mk nhân ra nha :)   )

29 tháng 9 2017

2/ \(\frac{\sqrt{x-2011}-1}{x-2011}+\frac{\sqrt{y-2012}-1}{y-2012}+\frac{\sqrt{z-2013}-1}{z-2013}=\frac{3}{4}\)

\(\Leftrightarrow\frac{4\sqrt{x-2011}-4}{x-2011}+\frac{4\sqrt{y-2012}-4}{y-2012}+\frac{4\sqrt{z-2013}-4}{z-2013}=3\)

\(\Leftrightarrow\left(1-\frac{4\sqrt{x-2011}-4}{x-2011}\right)+\left(1-\frac{4\sqrt{y-2012}-4}{y-2012}\right)+\left(1-\frac{4\sqrt{z-2013}-4}{z-2013}\right)=0\)

\(\Leftrightarrow\left(\frac{x-2011-4\sqrt{x-2011}+4}{x-2011}\right)+\left(\frac{y-2012-4\sqrt{y-2012}+4}{y-2012}\right)+\left(\frac{z-2013-4\sqrt{z-2013}+4}{z-2013}\right)=0\)

\(\Leftrightarrow\frac{\left(\sqrt{x-2011}-2\right)^2}{x-2011}+\frac{\left(\sqrt{y-2012}-2\right)^2}{y-2012}+\frac{\left(\sqrt{z-2013}-2\right)^2}{z-2013}=0\)

Dấu = xảy ra khi \(\sqrt{x-2011}=2;\sqrt{y-2012}=2;\sqrt{z-2013}=2\)

\(\Leftrightarrow x=2015;y=2016;z=2017\)

14 tháng 3 2019

Tham khảo: Câu hỏi của Nguyen Nhat Minh - Toán lớp 8 - Học toán với OnlineMath

Nếu olm không hiện link xanh đậm,hãy nhập link này vào trình duyệt của bạn:https://olm.vn/hoi-dap/detail/214469884091.html

19 tháng 3 2019

Thật sự ra mục đích bài này đi chứng minh biểu thức trong ngoặc là scp

Đây là dề thi HSG toán cấp tỉnh Đồng Tháp

Có: \(\sqrt{\left(1+x^2\right)\left(1+y^2\right)\left(1+z^2\right)}\)

\(=\sqrt{\left(x^2+xy+yz+xz\right)\left(y^2+xy+yz+xz\right)\left(z^2+xy+yz+xz\right)}\)

Sau đó thực hiên phân tích đa thức thành nhân tử mỗi ngoặc

\(=\sqrt{\left(x+y\right)^2\left(y+z\right)^2\left(x+z\right)^2}\)

\(=\left(x+y\right)\left(y+z\right)\left(x+z\right)\)là số hữu tỉ

Vậy

Câu số 1b đề thi hsg

Chào anh từ  huyện Cao Lãnh 

28 tháng 7 2017

Ta có:

\(x\left(x+y+z\right)=\frac{15}{2}\)

\(y\left(x+y+z\right)=\frac{-5}{2}\)

\(z\left(x+y+z\right)=20\)

=>\(x\left(x+y+z\right)+y\left(x+y+z\right)+z\left(x+y+z\right)=\frac{15}{2}+\frac{-5}{2}+20\)

                                               \(\left(x+y+z\right)\left(x+y+z\right)=\frac{15-5}{2}+20\)

                                                                     \(\left(x+y+z\right)^2=\frac{10}{2}+20\)

                                                                     \(\left(x+y+z\right)^2=5+20\)

                                                                     \(\left(x+y+z\right)^2=25\)

=>x+y+z=5 hoặc x+y+x=-5

Với x+y+z=5

=>\(x.5=\frac{15}{2}\)=>\(x=\frac{15}{2}.\frac{1}{5}=\frac{3}{2}\)

   \(y.5=\frac{-5}{2}\)=>\(y=\frac{-5}{2}.\frac{1}{5}=\frac{-1}{2}\)

   \(z.5=20\)=>\(z=\frac{20}{5}=4\)

Với x+y+z=-5

=>\(x.\left(-5\right)=\frac{15}{2}\)=>\(x=\frac{15}{2}.\frac{-1}{5}=\frac{-3}{2}\)

   \(y.\left(-5\right)=\frac{-5}{2}\)=>\(y=\frac{-5}{2}.\frac{-1}{5}=\frac{1}{2}\)

   \(z.\left(-5\right)=20\)=>\(z=\frac{20}{-5}=-4\)

Vậy \(x=\frac{3}{2},y=-\frac{1}{2},z=4\)\(x=-\frac{3}{2},y=\frac{1}{2},z=-4\)

28 tháng 7 2017

Ta có:

\(x\left(x+y+z\right)+y\left(x+y+z\right)+z\left(x+y+z\right)=\frac{15}{2}+\left(-\frac{5}{2}\right)+20\)(Cộng vế với vế)

\(\Leftrightarrow\left(x+y+z\right)\left(x+y+z\right)=\frac{50}{2}=25\)

\(\Rightarrow\left(x+y+z\right)^2=25\Leftrightarrow x+y+z=\sqrt{25}=5\)

\(\Rightarrow\hept{\begin{cases}x.5=\frac{15}{2}\Rightarrow x=\frac{3}{2}\\y.5=-\frac{5}{2}\Rightarrow y=-\frac{1}{2}\\z.5=20\Rightarrow z=4\end{cases}}\)

Vậy \(x=\frac{3}{2};y=-\frac{1}{2};z=4\).