K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2016

\(\sqrt{2-x}=3-\sqrt{3x+1}\left(ĐK:-\frac{1}{3}\le x\le2\right)\)

\(\Leftrightarrow\sqrt{2-x}+\sqrt{3x+1}=3\)

\(\Leftrightarrow2-x+3x+1+2\sqrt{\left(2-x\right)\left(3x+1\right)}=9\)

\(\Leftrightarrow2\sqrt{\left(2-x\right)\left(3x+1\right)}=6-2x\)

\(\Leftrightarrow\sqrt{\left(2-x\right)\left(3x+1\right)}=3-x\left(ĐK:x\le3\right)\)

\(\Leftrightarrow\left(2-x\right)\left(3x+1\right)=\left(3-x\right)^2\)

\(\Leftrightarrow6x+2-3x^2-x=9-6x+x^2\)

\(\Leftrightarrow4x^2-11x+7=0\)

\(\Leftrightarrow\left(x-1\right)\left(4x-7\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x-1=0\\4x-7=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\left(tm\right)\\x=\frac{7}{4}\left(tm\right)\end{array}\right.\)

Vậy pt đã cho có tập nghiệm là \(S=\left\{1;\frac{7}{4}\right\}\)

NV
27 tháng 12 2020

ĐKXĐ: \(x\ge2\)

\(\sqrt{\left(x-1\right)\left(x-2\right)}-\sqrt{x-1}+\sqrt{x+3}-\sqrt{\left(x-2\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x-2}-1\right)-\sqrt{x+3}\left(\sqrt{x-2}-1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-1}-\sqrt{x+3}\right)\left(\sqrt{x-2}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=\sqrt{x+3}\\\sqrt{x-2}=1\end{matrix}\right.\)

\(\Leftrightarrow x=3\)

1 tháng 11 2021

\(a,Đk:x\ge0\\ PT\Leftrightarrow4x-8\sqrt{x}-7\sqrt{x}+14=0\\ \Leftrightarrow\left(\sqrt{x}-2\right)\left(4\sqrt{x}-7\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=4\\x=\dfrac{49}{4}\end{matrix}\right.\left(tm\right)\\ b,ĐK:x\ge0\\ PT\Leftrightarrow\sqrt{x+1}-\sqrt{3x}+1-4x^2=0\\ \Leftrightarrow\dfrac{1-2x}{\sqrt{x+1}+\sqrt{3x}}+\left(1-2x\right)\left(2x+1\right)=0\\ \Leftrightarrow\left(1-2x\right)\left(\dfrac{1}{\sqrt{x+1}+\sqrt{3x}}+2x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\left(tm\right)\\\dfrac{1}{\sqrt{x+1}+\sqrt{3x}}+2x+1=0\left(1\right)\end{matrix}\right.\)

Với \(x\ge0\Leftrightarrow\left(1\right)>0\)

Vậy PT có nghiệm \(x=\dfrac{1}{2}\)

a) ĐKXĐ: \(x\ge0\)

Ta có: \(\left(x+3\sqrt{x}+2\right)\left(x+9\sqrt{x}+18\right)=168x\)

\(\Leftrightarrow\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)\left(\sqrt{x}+6\right)=168x\)

\(\Leftrightarrow\left(x+6\right)^2+12\sqrt{x}\left(x+6\right)-133=0\)

\(\Leftrightarrow\left(x+6\right)^2+19\sqrt{x}\left(x+6\right)-7\sqrt{x}\left(x+6\right)-133=0\)

\(\Leftrightarrow\left(x+6\right)\left(x+19\sqrt{x}+6\right)-7\sqrt{x}\left(x+19\sqrt{x}+6\right)=0\)

\(\Leftrightarrow\left(x-7\sqrt{x}+6\right)=0\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(\sqrt{x}-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=36\end{matrix}\right.\)

30 tháng 7 2021

Dòng thứ 2 qua dòng thứ 3 anh làm chậm lại được không ạ, tại tắt quá e không hiểu

9 tháng 5 2017

Đặt \(\sqrt{x^2+1}=a\left(a>0\right),x+3=b\)

\(Pt\Leftrightarrow a^2+3b-9=ab\)

\(\Leftrightarrow\left(a-3\right)\left(a+3\right)-b\left(a-3\right)=0\)

\(\Leftrightarrow\left(a-3\right)\left(a+3-b\right)=0\Leftrightarrow\orbr{\begin{cases}a=3\\a+3=b\end{cases}}\left(tm\right)\)

\(a=3\Leftrightarrow\sqrt{x^2+1}=3\Leftrightarrow x^2+1=9\Leftrightarrow x^2=8\Leftrightarrow\orbr{\begin{cases}x=2\sqrt{2}\\x=-2\sqrt{2}\end{cases}}\)

*\(a+3=b\Leftrightarrow\sqrt{x^2+1}+3=x+3\)( bình phương tiếp với x>-3)( hình như k có nghiệm)