Cho 2 đường thẳng AB và CD cắt nhau tại O. Vẽ tia phân giác Om của góc BOC. Gọi tia đối của tia Om là tia On. Chứng minh:
a) Góc nOA = Góc nOB.
b) On là tia phân giác của góc AOB.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Góc AOC + COB = 180đ ( kề bù )
Có AOC = DOB và vì OM , ON là tia phân giác 2 góc này nên MOC = NOB
=> MOC + NOB = AOC ( * )
Có MOC + NOB + COB mà từ ( * ) => MOC + COB + NOB = AOC + COB và = 180o
2 tia OM và ON có chung điểm O và tạo với nhau một góc = 180o
=> OM và ON là 2 tia đối nhau
a) ta có: ON là tia đối của tia OM, OC là tia đối của tia OD
CD cắt MN tại O
=> góc COM = góc NOD ( đối đỉnh) (1)
ta có: OA là tia đối của tia OB, ON là tia đối của tia OM
AB cắt MN tại O
=> góc BOM = góc NOA ( đối đỉnh) (2)
mà góc COM = góc BOM ( gt)
Từ(1);(2) => góc NOD = góc NOA
b) ta có: AB cắt CD tại O
=> góc BOC = góc AOD ( đối đỉnh)
mà OM là tia phân giác góc BOC (gt)
=> OM nằm trong góc OBC
mà ON là tia đối của tia OM (gt)
=> ON nằm trong góc AOD
mà góc NOA = góc NOD (phần a)
=> ON là tia phân giác góc AOD
ON là phân giác góc DOB
Chứng minh:
Ta có: ^DOn = ^COm ( đối đỉnh)
^BOn = ^AOm ( đối đỉnh)
Mà ^AOm = ^COm ( Om là phân giác góc AOC)
-> ^DOn = ^BOn
=> On là phân giác góc DOB
Bài giải
Ta có : Hai đường thẳng AB và CD cắt nhau tại O
\(\Rightarrow\) Sẽ tạo thành hai cặp góc đổi đỉnh
Mà hai góc đối đỉnh thì bằng nhau \(\Rightarrow\) \(\widehat{AOC}=\widehat{BOD}\) , \(\widehat{AOD}=\widehat{COB}\)
Mà On là tia đối của Om ( Om là tia phân giác của góc AOC )
\(\Rightarrow\) On là tia phân giác của góc \(BOD\)