K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 12 2016

Từ \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2ac+2bc\)

\(\left(a+b+c\right)^2=a^2+b^2+c^2\)

\(\Rightarrow2ab+2ac+2bc=0\)

\(\Rightarrow2\left(ab+ac+bc\right)=0\)

\(\Rightarrow ab+ac+bc=0\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Leftrightarrow\frac{1}{a}=-\left(\frac{1}{b}+\frac{1}{c}\right)\). Khi đó

\(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{1}{b^3}+\frac{1}{c^3}-\left(\frac{1}{b}+\frac{1}{c}\right)^3=-\frac{3}{bc}\left(\frac{1}{b}+\frac{1}{c}\right)=-\frac{3}{bc}\cdot\frac{-1}{a}=\frac{3}{abc}\)

 

 

9 tháng 12 2016

thanks ạ

 

26 tháng 6 2023

ta có

4x6x8 = 8x2x3x4

(2+2)(3+3)(4+4) = 8x2x3x4

(a+2)(b+3)(c+4) = 8abc 

vậy a=2 b=3 c=4 

cách này chx chắc đúng 

10 tháng 7 2023

 TH1: Nếu \(a\ge b\ge c\) thì đk đã cho tương đương với \(3\left(a-b\right)=5\left(b-c\right)=7\left(a-c\right)\) \(\Leftrightarrow\left\{{}\begin{matrix}3a-3b=5b-5c\\5b-5c=7a-7c\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3a+5c=8b\\7a-2c=5b\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}6a+10c=16b\\35a-10c=25b\end{matrix}\right.\) \(\Rightarrow41a=41b\Leftrightarrow a=b\). Điều này có nghĩa là \(a-b=0\), từ đó suy ra \(5\left(b-c\right)=0\Leftrightarrow b=c\). Vậy \(a=b=c\).

 TH2: Nếu \(b\ge c\ge a\) thì đk đã cho tương đương với \(3\left(b-a\right)=5\left(b-c\right)=7\left(c-a\right)\) \(\Leftrightarrow\left\{{}\begin{matrix}3b-3a=5b-5c\\5b-5c=7c-7a\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3a+2b=5c\\7a+5b=12c\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}15a+10b=25c\\-14a-10b=-24c\end{matrix}\right.\) \(\Rightarrow a=c\). Từ đó suy ra \(a-c=0\) hay \(3\left(b-a\right)=0\Leftrightarrow a=b\). Vậy \(a=b=c\).

 TH3: Nếu \(c\ge a\ge b\) thì đk đã cho tương đương với \(3\left(a-b\right)=5\left(c-b\right)=7\left(c-a\right)\) \(\Leftrightarrow\left\{{}\begin{matrix}3a-3b=5c-5b\\5c-5b=7c-7a\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3a+2b=5c\\7a-5b=2c\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}15a+10b=25c\\14a-10b=4c\end{matrix}\right.\) \(\Rightarrow29a=29c\Leftrightarrow a=c\). Từ đó suy ra \(a-c=0\) hay \(3\left(a-b\right)=0\Leftrightarrow a=b\). Vậy \(a=b=c\)

 Tất cả các trường hợp còn lại làm tương tự và đều suy ra được \(a=b=c\). Ta có đpcm.

10 tháng 7 2023

hi =D

28 tháng 6 2017

a+b>= 2 căn ab

tương tự cộng theo vế với thu gọn

28 tháng 6 2017

bạn có thể giải chi tiết hơn giúp mình dc k. Tks :v

9 tháng 4 2016

Chiều rộng là : 15 : ( 5 - 3 ) x 3 = 22,5 m

Chiều dài là : 15 + 22,5 = 37,5 m

Chu vi là : ( 37,5 + 22,5 ) x 2 = 120 m

Diện tích là : 37,5 x 22,5 = 843,75 m2

9 tháng 4 2016

Ta có: (a+b-c)/c=(b+c-a)/a=(c+a-b)/b=(a+b-c+b+c... (a+b+c)=(a+b+c)/(a+b+c)=1 
=>(a+b-c)/c=1 => a+b-c=c =>a+b=2c (1) 
Tương tự: (b+c-a)/a=1 =>b+c=2a (2) 
(c+a-b)/b=1 =>c+a=2b (3) 
Thay (1), (2), (3) vào P, ta có: 
P=(a+b)/a . (b+c)/b .(a+c)/c=2c/a.2a/b.2b/c=2.2.2=8. Hết nhưng sách thì chia ra hai trường hợp như sau: 
Từ giả thiết, suy ra: 
(a+b-c)/c+2=(b+c-a)/a+2=(c+a-b)/b+2 
<=> (a+b+c)/c=(b+c+a)/a=(c+a+b)/b 
Xét 2 trường hợp: 
Nếu a+b+c=0 => (a+b)/a.(b+c)/b.(c+a)/c=((-c)(-a)(-b))/a... 
Nếu a+b+c khác 0 =>a=b=c =>P=2.2.2=8

toán 6 đó hả

16 tháng 8 2018

uk giúp mình với

6 tháng 12 2018

quá đơn giản 

cho 5 k giải cho

(mình trong đội tuyển toán đó nhe nên làm theo đi)